Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson's ratio in auxetic honeycombs core layer

被引:122
作者
Pham Hong Cong [1 ]
Pham Thanh Long [2 ]
Nguyen Van Nhat [2 ]
Nguyen Dinh Duc [2 ,3 ,4 ]
机构
[1] Vietnam Acad Sci & Technol, CIC, 18 Hoang Quoc Viet, Hanoi, Vietnam
[2] VNU Hanoi Univ Engn & Technol UET, Adv Mat & Struct Lab, 144 Xuan Thuy, Hanoi, Vietnam
[3] Vietnam Japan Univ, Infrastruct Engn Program VNU Hanoi, My Dinh 1 Tu Liem, Hanoi, Vietnam
[4] Sejong Univ, Dept Civil & Environm Engn, Natl Res Lab, 209 Neungdong Ro, Seoul 05006, South Korea
关键词
Eccentrically stiffened circular cylindrical shell; Auxetic core layer; Nonlinear dynamic and vibration; FSDT; Blast load; ELASTIC FOUNDATIONS; SHALLOW SHELLS; VIBRATION; BEHAVIOR;
D O I
10.1016/j.ijmecsci.2018.12.052
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Present research aims to analyse the nonlinear dynamic behavior of eccentrically stiffened (ES) circular cylindrical shells with negative Poisson's ratios in auxetic honeycombs core layer on elastic foundations and subjected to blast and mechanical loads. This study considers a three - layer circular cylindrical shells in which the core layer is the auxetic material with negative Poisson's ratio, and the external layers are reinforced by a system of stiffeners. Based on the analytical solution, Reddy's first order shear deformation theory with the geometrical nonlinear in von Karman and Airy stress functions method, Galerkin method and the fourth-order Runge-Kutta method, out explicit expressions can be determined: fundamental frequency, dynamic response and frequency-amplitude curves. Numerical results are provided to explore the effects of geometrical parameters, material properties, elastic foundations, imperfections, eccentrically stiffeners, mechanical and blast loads on the nonlinear dynamic behavior: fundamental frequency, dynamic response and frequency-amplitude curves.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 24 条
[1]   Dynamic behaviour of auxetic gradient composite hexagonal honeycombs [J].
Boldrin, L. ;
Hummel, S. ;
Scarpa, F. ;
Di Maio, D. ;
Lira, C. ;
Ruzzene, M. ;
Remillat, C. D. L. ;
Lim, T. C. ;
Rajasekaran, R. ;
Patsias, S. .
COMPOSITE STRUCTURES, 2016, 149 :114-124
[2]   Dynamic behaviour of a thin laminated plate embedded with auxetic layers subject to in-plane excitation [J].
Chen, Xi ;
Feng, Zhihua .
MECHANICS RESEARCH COMMUNICATIONS, 2017, 85 :45-52
[3]   Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression [J].
Dao Huy Bich ;
Dao Van Dung ;
Vu Hoai Nam ;
Nguyen Thi Phuong .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 74 :190-200
[4]  
Deng QT, 2010, J SOLID MECH, V2, P393
[5]   Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models [J].
El Nady, K. ;
Dos Reis, F. ;
Ganghoffer, J. F. .
COMPOSITE STRUCTURES, 2017, 170 :271-290
[6]  
Hadjigeorgiou E., 2004, Comput. Methods Sci. Technol, V10, P147, DOI [10.12921/cmst.2004.10.02.147-160, DOI 10.12921/CMST.2004.10.02.147-160]
[7]   Three-dimensional modelling of auxetic sandwich panels for localised impact resistance [J].
Imbalzano, Gabriele ;
Phuong Tran ;
Ngo, Tuan D. ;
Lee, Peter V. S. .
JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2017, 19 (03) :291-316
[8]   DEFORMATION MECHANISMS IN NEGATIVE POISSON RATIO MATERIALS - STRUCTURAL ASPECTS [J].
LAKES, R .
JOURNAL OF MATERIALS SCIENCE, 1991, 26 (09) :2287-2292
[9]   Thermal Stresses in Auxetic Plates and Shells [J].
Lim, Teik-Cheng .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2015, 22 (03) :205-212
[10]   Shear deformation in thick auxetic plates [J].
Lim, Teik-Cheng .
SMART MATERIALS AND STRUCTURES, 2013, 22 (08)