Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection

被引:25
|
作者
Ortega, Julio [1 ]
Asensio-Cubero, Javier [2 ]
Gan, John Q. [3 ]
Ortiz, Andres [4 ]
机构
[1] Univ Granada, Dept Comp Architecture & Technol, CITIC, Granada, Spain
[2] Neuralcubes Ltd, London, England
[3] Univ Essex, Sch Comp Sci & Elect Engn, Colchester, Essex, England
[4] Univ Malaga, Dept Commun Engn, Malaga, Spain
关键词
Brain-computer interfaces (BCI); Feature selection; EEG classification; Imagery tasks classification; Multiobjective optimization; Multiresolution analysis (MRA); GENETIC ALGORITHMS;
D O I
10.1186/s12938-016-0178-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. Methods: This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. Results and conclusion: The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Feature subset and time segment selection for the classification of EEG data based motor imagery
    Wang, Jie
    Feng, Zuren
    Ren, Xiaodong
    Lu, Na
    Luo, Jing
    Sun, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 61
  • [22] An evolutionary multiobjective method based on dominance and decomposition for feature selection in classification
    Liang, Jing
    Zhang, Yuyang
    Chen, Ke
    Qu, Boyang
    Yu, Kunjie
    Yue, Caitong
    Suganthan, Ponnuthurai Nagaratnam
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [23] Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition
    Sadiq, Muhammad Tariq
    Yu, Xiaojun
    Yuan, Zhaohui
    Aziz, Muhammad Zulkifal
    Rehman, Naveed ur
    Ding, Weiping
    Xiao, Gaoxi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1177 - 1189
  • [24] Ensemble of Classifiers Applied to Motor Imagery Task Classification for BCI Applications
    Ramos, Alimed Celecia
    Hernandez, Rene Gonzalez
    Vellasco, Marley
    Vellasco, Pedro
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2995 - 3002
  • [25] A Multiform Optimization Framework for Multiobjective Feature Selection in Classification
    Liang, Jing
    Zhang, Yuyang
    Qu, Boyang
    Chen, Ke
    Yu, Kunjie
    Yue, Caitong
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1024 - 1038
  • [26] Multiobjective optimization algorithm with dynamic operator selection for feature selection in high-dimensional classification
    Wei, Wenhong
    Xuan, Manlin
    Li, Lingjie
    Lin, Qiuzhen
    Ming, Zhong
    Coello, Carlos A. Coello
    APPLIED SOFT COMPUTING, 2023, 143
  • [27] Impact of Feature Selection on EEG Based Motor Imagery
    Sahu, Mridu
    Shukla, Sneha
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR COMPETITIVE STRATEGIES, 2019, 40 : 749 - 762
  • [28] Data Adaptive Filtering Approach to Improve the Classification Accuracy of Motor Imagery for BCI
    Saha, Sanjoy Kumar
    Ali, Md. Sujan
    2016 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2016, : 247 - 250
  • [29] Solving Multiobjective Feature Selection Problems in Classification via Problem Reformulation and Duplication Handling
    Jiao, Ruwang
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 846 - 860
  • [30] Time-series discrimination using feature relevance analysis in motor imagery classification
    Alvarez-Meza, A. M.
    Velasquez-Martinez, L. F.
    Castellanos-Dominguez, G.
    NEUROCOMPUTING, 2015, 151 : 122 - 129