A fractional order optimal 4D chaotic financial model with Mittag-Leffler law

被引:42
作者
Atangana, A. [1 ]
Bonyah, E. [2 ]
Elsadany, A. A. [3 ,4 ]
机构
[1] Univ Free State, Inst Groundwater Studies, ZA-9301 Bloemfontein, South Africa
[2] Univ Educ Winneba Kumasi Campus, Dept Math, Kumasi, Ghana
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Studies Al Kharj, Dept Math, Al Kharj, Saudi Arabia
[4] Suez Canal Univ, Dept Basic Sci, Fac Comp & Informat, Ismailia 41522, Egypt
关键词
Fractional optimal control; Euler-Lagrange optimality; Chaotic systems; Financial model; Mittag-Leffler function; DYNAMICS; EXISTENCE; EQUATION;
D O I
10.1016/j.cjph.2020.02.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a fractional 4D chaotic financial model with optimal control is investigated. The fractional derivative used in this financial model is Atangana-Baleanu derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on Mittag-Leffler law. Optimal control is incorporated into the model to maximize output. The Adams-Moulton scheme of the Atangana-Baleanu derivative is utilized to obtain the numerical results which produce new attractors. Euler-Lagrange optimality conditions are determined for the fractional 4D chaotic financial model. The numerical results show that the memory factor has a great influences on the dynamics of the model.
引用
收藏
页码:38 / 53
页数:16
相关论文
共 47 条
[1]   Analysis of Stokes' Second Problem for Nanofluids Using Modern Approach of Atangana-Baleanu Fractional Derivative [J].
Abro, Kashif Ali ;
Rashidi, Mohammad Mehdi ;
Khan, Ilyas ;
Abro, Irfan Ali ;
Tassaddiq, Asifa .
JOURNAL OF NANOFLUIDS, 2018, 7 (04) :738-747
[2]   Chua's circuit model with Atangana-Baleanu derivative with fractional order [J].
Alkahtani, Badr Saad T. .
CHAOS SOLITONS & FRACTALS, 2016, 89 :547-551
[3]   Chaos on the Vallis Model for El Nino with Fractional Operators [J].
Alkahtani, Badr Saad T. ;
Atangana, Abdon .
ENTROPY, 2016, 18 (04)
[4]   Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion [J].
Arthi, G. ;
Park, Ju H. ;
Jung, H. Y. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 32 :145-157
[5]   Fractional stochastic modeling: New approach to capture more heterogeneity [J].
Atangana, A. ;
Bonyah, E. .
CHAOS, 2019, 29 (01)
[6]   Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena [J].
Atangana, Abdon ;
Gomez-Aguilar, J. F. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (04)
[7]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[8]   Cauchy and source problems for an advection-diffusion equation with Atangana-Baleanu derivative on the real line [J].
Avci, Derya ;
Yetim, Aylin .
CHAOS SOLITONS & FRACTALS, 2019, 118 :361-365
[9]   Existence and uniqueness of solution of a fractional order tuberculosis model [J].
Baba, Isa Abdullahi ;
Ghanbari, Behzad .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10)
[10]  
Baskonus M. B., 2016, AIP C P, V1738