Analytical algorithm of weighted 3D datum transformation using the constraint of orthonormal matrix

被引:18
|
作者
Zeng, Huaien [1 ,2 ]
机构
[1] China Three Gorges Univ, Minist Educ, Key Lab Geol Hazards Three Gorges Reservoir Area, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, Hubei Key Lab Construct & Management Hydropower E, Yichang 443002, Peoples R China
来源
EARTH PLANETS AND SPACE | 2015年 / 67卷
基金
中国国家自然科学基金;
关键词
Weighted 3D datum transformation; Analytical algorithm; Lagrangian extremum; Constraint of orthonormal matrix; Procrustes algorithm; GLOBAL OPTIMIZATION METHOD; TOTAL LEAST-SQUARES; COORDINATE TRANSFORMATION; REFERENCE FRAME;
D O I
10.1186/s40623-015-0263-6
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Based on the Lagrangian extremum law with the constraint that rotation matrix is an orthonormal matrix, the paper presents a new analytical algorithm of weighted 3D datum transformation. It is a stepwise algorithm. Firstly, the rotation matrix is computed using eigenvalue-eigenvector decomposition. Then, the scale parameter is computed with computed rotation matrix. Lastly, the translation parameters are computed with computed rotation matrix and scale parameter. The paper investigates the stability of the presented algorithm in the cases that the common points are distributed in 3D, 2D, and 1D spaces including the approximate 2D and 1D spaces, and gives the corresponding modified formula of rotation matrix. The comparison of the presented algorithm and classic Procrustes algorithm is investigated, and an improved Procrustes algorithm is presented since that the classic Procrustes algorithm may yield a reflection rather than a rotation in the cases that the common points are distributed in 2D space. A simulative numerical case and a practical case are illustrated.
引用
收藏
页数:10
相关论文
共 36 条
  • [11] Extension of the ABC-Procrustes algorithm for 3D affine coordinate transformation
    Palancz, B.
    Zaletnyik, P.
    Awange, J. L.
    Heck, B.
    EARTH PLANETS AND SPACE, 2010, 62 (11): : 857 - 862
  • [12] WTLS iterative algorithm of 3D similarity coordinate transformation based on Gibbs vectors
    Zeng, Huaien
    Chang, Guobin
    He, Haiqing
    Li, Kezhao
    EARTH PLANETS AND SPACE, 2020, 72 (01):
  • [13] Extended WTLS iterative algorithm of 3D similarity transformation based on Gibbs vector
    Zeng, Huaien
    He, Hongwei
    Chen, Legeng
    Chang, Guobin
    He, Haiqing
    ACTA GEODAETICA ET GEOPHYSICA, 2022, 57 (01) : 43 - 61
  • [14] Data snooping algorithm for universal 3D similarity transformation based on generalized EIV model
    Wang, Bin
    Yu, Jie
    Liu, Chao
    Li, Mingfeng
    Zhu, Bangyan
    MEASUREMENT, 2018, 119 : 56 - 62
  • [15] A generalized weighted total least squares-based, iterative solution to the estimation of 3D similarity transformation parameters
    Wang, Yongbo
    Yuan, Kun
    Zheng, Nanshan
    Bian, Zhengfu
    Yang, Min
    MEASUREMENT, 2023, 210
  • [16] Outlier Detection in 3D Coordinate Transformation with Fuzzy Logic
    Sisman, Yasemin
    Dilaver, Aslan
    Bektas, Sebahattin
    ACTA MONTANISTICA SLOVACA, 2012, 17 (01) : 1 - 8
  • [17] Simulating the Cortical 3D Visuomotor Transformation of Reach Depth
    Blohm, Gunnar
    PLOS ONE, 2012, 7 (07):
  • [18] M-estimator for the 3D symmetric Helmert coordinate transformation
    Chang, Guobin
    Xu, Tianhe
    Wang, Qianxin
    JOURNAL OF GEODESY, 2018, 92 (01) : 47 - 58
  • [19] Evaluation of the ICP Algorithm in 3D Point Cloud Registration
    Li, Peng
    Wang, Ruisheng
    Wang, Yanxia
    Tao, Wuyong
    IEEE ACCESS, 2020, 8 : 68030 - 68048
  • [20] A Hybridized Centroid Technique for 3D Molodensky-Badekas Coordinate Transformation in the Ghana Geodetic Reference Network using Total Least Squares Approach
    Annan, Richard Fiifi
    Ziggah, Yao Yevenyo
    Ayer, John
    Odutola, Christian Amans
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2016, 5 (03): : 269 - 284