Drawing (Complete) Binary Tanglegrams Hardness, Approximation, Fixed-Parameter Tractability

被引:19
作者
Buchin, Kevin [2 ]
Buchin, Maike [2 ]
Byrka, Jaroslaw [3 ]
Noellenburg, Martin [1 ]
Okamoto, Yoshio [4 ]
Silveira, Rodrigo I. [5 ]
Wolff, Alexander [6 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Theoret Informat, Karlsruhe, Germany
[2] TU Eindhoven, Fac Wiskunde Informat, Eindhoven, Netherlands
[3] Univ Wroclaw, Inst Comp Sci, PL-51151 Wroclaw, Poland
[4] Tokyo Inst Technol, Grad Sch Informat Sci & Engn, Tokyo 152, Japan
[5] Univ Politecn Cataluna, Dept Matemat Aplicada 2, Barcelona, Spain
[6] Univ Wurzburg, Inst Informat, Lehrstuhl 1, D-8700 Wurzburg, Germany
基金
日本学术振兴会;
关键词
Binary tanglegram; Crossing minimization; NP-hardness; Approximation algorithm; Fixed-parameter tractability; CROSSING MINIMIZATION; ALGORITHMS; CUT;
D O I
10.1007/s00453-010-9456-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A binary tanglegram is a drawing of a pair of rooted binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example, in phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges have as few crossings as possible. It is known that finding a tanglegram with the minimum number of crossings is NP-hard and that the problem is fixed-parameter tractable with respect to that number. We prove that under the Unique Games Conjecture there is no constant-factor approximation for binary trees. We show that the problem is NP-hard even if both trees are complete binary trees. For this case we give an O(n (3))-time 2-approximation and a new, simple fixed-parameter algorithm. We show that the maximization version of the dual problem for binary trees can be reduced to a version of MaxCut for which the algorithm of Goemans and Williamson yields a 0.878-approximation.
引用
收藏
页码:309 / 332
页数:24
相关论文
共 26 条
[1]  
Bansal MS, 2009, LECT N BIOINFORMAT, V5462, P114, DOI 10.1007/978-3-642-00727-9_13
[2]  
Baumann F, 2010, LECT NOTES COMPUT SC, V6049, P118, DOI 10.1007/978-3-642-13193-6_11
[3]   Optimal upward planarity testing of single-source digraphs [J].
Bertolazzi, P ;
Di Battista, G ;
Mannino, C ;
Tamassia, R .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :132-169
[4]  
Böcker S, 2009, LECT NOTES COMPUT SC, V5917, P38, DOI 10.1007/978-3-642-11269-0_3
[5]  
Buchin K, 2009, LECT NOTES COMPUT SC, V5417, P324, DOI 10.1007/978-3-642-00219-9_32
[6]   A projected gradient algorithm for solving the maxcut SDP relaxation [J].
Burer, S ;
Monteiro, RDC .
OPTIMIZATION METHODS & SOFTWARE, 2001, 15 (3-4) :175-200
[7]  
Cormen T., 2001, Introduction to Algorithms
[8]   Fixed parameter algorithms for ONE-SIDED CROSSING MINIMIZATION revisited [J].
Dujmovic, Vida ;
Fernau, Henning ;
Kaufmann, Michael .
JOURNAL OF DISCRETE ALGORITHMS, 2008, 6 (02) :313-323
[9]  
DWYER T, 2004, P 2004 AUSTR S INF V, V35, P109
[10]   EDGE CROSSINGS IN DRAWINGS OF BIPARTITE GRAPHS [J].
EADES, P ;
WORMALD, NC .
ALGORITHMICA, 1994, 11 (04) :379-403