Specification testing for regression models with dependent data

被引:4
作者
Hidalgo, J. [1 ]
机构
[1] London Sch Econ, Dept Econ, London WC2A 2AE, England
基金
英国经济与社会研究理事会;
关键词
functional specification; variable selection; nonparametric kernel regression; frequency domain bootstrap;
D O I
10.1016/j.jeconom.2007.08.013
中图分类号
F [经济];
学科分类号
02 ;
摘要
We examine a consistent test for the correct specification of a regression function with dependent data. The test is based on the supremum of the difference between the parametric and nonparametric estimates of the regression model. Rather surprisingly, the behaviour of the test depends on whether the regressors are deterministic or stochastic. In the former situation, the normalization constants necessary to obtain the limiting Gumbel distribution are data dependent and difficult to estimate, so it may be difficult to obtain valid critical values, whereas, in the latter, the asymptotic distribution may not be even known. Because of that, under very mild regularity conditions, we describe a bootstrap analogue for the test, showing its asymptotic validity and finite sample behaviour in a small Monte-Carlo experiment. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 165
页数:23
相关论文
共 50 条
[31]   Composite Quantile Regression for Varying Coefficient Models with Response Data Missing at Random [J].
Luo, Shuanghua ;
Zhang, Cheng-yi ;
Wang, Meihua .
SYMMETRY-BASEL, 2019, 11 (09)
[32]   High dimensional generalized linear models for temporal dependent data [J].
Han, Yuefeng ;
Tsay, Ruey S. ;
Wu, Wei Biao .
BERNOULLI, 2023, 29 (01) :105-131
[33]   Statistical inference and large-scale multiple testing for high-dimensional regression models [J].
Cai, T. Tony ;
Guo, Zijian ;
Xia, Yin .
TEST, 2023, 32 (04) :1135-1171
[34]   Combining clinical and molecular data in regression prediction models: insights from a simulation study [J].
De Bin, Riccardo ;
Boulesteix, Anne-Laure ;
Benner, Axel ;
Becker, Natalia ;
Sauerbrei, Willi .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (06) :1904-1919
[35]   Sparsity identification in ultra-high dimensional quantile regression models with longitudinal data [J].
Gao, Xianli ;
Liu, Qiang .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (19) :4712-4736
[36]   Automated Bayesian variable selection methods for binary regression models with missing covariate data [J].
Michael Bergrab ;
Christian Aßmann .
AStA Wirtschafts- und Sozialstatistisches Archiv, 2024, 18 (2) :203-244
[37]   Quantile regression for varying-coefficient partially nonlinear models with randomly truncated data [J].
Xu, Hong-Xia ;
Fan, Guo-Liang ;
Liang, Han-Ying .
STATISTICAL PAPERS, 2024, 65 (04) :2567-2604
[38]   On Combining Wavelets Expansion and Sparse Linear Models for Regression on Metabolomic Data and Biomarker Selection [J].
Villa-Vialaneix, Nathalie ;
Hernandez, Noslen ;
Paris, Alain ;
Domange, Celine ;
Priymenko, Nathalie ;
Besse, Philippe .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (01) :282-298
[39]   Clustered Coefficient Regression Models for Poisson Process with an Application to Seasonal Warranty Claim Data [J].
Wang, Xin ;
Zhang, Xin ;
Zhu, Zhengyuan .
TECHNOMETRICS, 2023, 65 (04) :514-523
[40]   Variable selection for censored data with greedy algorithm based adaptive quantile regression models [J].
Rahaman Khan, Md Hasinur ;
Nishat, Md Nasim Saba .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,