Effect of temperature on carbon nanotube diameter and bundle arrangement: Microscopic and macroscopic analysis

被引:25
作者
Hinkov, I
Grand, J
de la Chapelle, ML
Farhat, S
Scott, CD
Nikolaev, P
Pichot, V
Launois, P
Mevellec, JY
Lefrant, S
机构
[1] Univ Paris 13, LIMHP, F-93430 Villetaneuse, France
[2] Univ Technol Troyes, LNIO, F-10010 Troyes, France
[3] NASA, Lyndon B Johnson Space Ctr ES4, Houston, TX 77058 USA
[4] GB Tech NASA Johnson Space Ctr, Houston, TX 77258 USA
[5] Univ Paris 11, Phys Solides Lab, CNRS, UMR 8502, F-91405 Orsay, France
[6] Univ Nantes, Inst Mat Nantes, LPC, F-44322 Nantes, France
关键词
D O I
10.1063/1.1638620
中图分类号
O59 [应用物理学];
学科分类号
摘要
The diameter distribution of the nanotubes produced by electric-arc discharge are measured using Raman spectroscopy at various wavelengths. These measurements agree with the results provided by two other techniques: high-resolution transmission electron microscopy and x-ray diffraction. The mean tube diameter shifts more than 0.1 nm with the increase of argon in the inert atmosphere. Some argon concentrations favored the synthesis of metallic tubes with specific diameters. Furthermore, the background gas influences the macroscopic characteristics of nanotube yield and bundle size, as determined by Brunauer-Emmett-Teller surface area measurements and x-ray diffraction. The information collected on nanotube diameter and arrangement is correlated with temperatures calculated using a numerical model of the plasma generated between the two electrodes. Indeed, plasma temperature control during the production process is achieved using argon-helium mixtures as buffer gases. The variation of the gas mixture from pure argon to pure helium changes the plasma temperature and hence the nanotube diameter. (C) 2004 American Institute of Physics.
引用
收藏
页码:2029 / 2037
页数:9
相关论文
共 35 条
[1]   Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes [J].
Alvarez, L ;
Righi, A ;
Guillard, T ;
Rols, S ;
Anglaret, E ;
Laplaze, D ;
Sauvajol, JL .
CHEMICAL PHYSICS LETTERS, 2000, 316 (3-4) :186-190
[2]   Growth mechanisms and diameter evolution of single wall carbon nanotubes [J].
Alvarez, L ;
Guillard, T ;
Sauvajol, JL ;
Flamant, G ;
Laplaze, D .
CHEMICAL PHYSICS LETTERS, 2001, 342 (1-2) :7-14
[3]   Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes [J].
Bandow, S ;
Asaka, S ;
Saito, Y ;
Rao, AM ;
Grigorian, L ;
Richter, E ;
Eklund, PC .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3779-3782
[4]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[5]   A mathematical model of the carbon arc reactor for fullerene synthesis [J].
Bilodeau, JF ;
Pousse, J ;
Gleizes, A .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 1998, 18 (02) :285-303
[6]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[7]  
BUISSON JP, 2001, UNPUB P MAT RES SOC, P633
[8]   Raman studies on single walled carbon nanotubes produced by the electric arc technique [J].
de la Chapelle, ML ;
Lefrant, S ;
Journet, C ;
Maser, W ;
Bernier, P ;
Loiseau, A .
CARBON, 1998, 36 (5-6) :705-708
[9]   Diameter control of single-walled carbon nanotubes using argon-helium mixture gases [J].
Farhat, S ;
de La Chapelle, ML ;
Loiseau, A ;
Scott, CD ;
Lefrant, S ;
Journet, C ;
Bernier, P .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (14) :6752-6759
[10]  
FARHAT S, 2003, J NANOSCI NANOTECHNO