Fairness in Generative Modeling: do it Unsupervised!

被引:1
|
作者
Zameshina, M. [1 ,2 ]
Teytaud, O. [2 ]
Teytaud, Fabien [3 ]
Hosu, Vlad [4 ]
Carraz, Nathanael [5 ]
Najman, Laurent [1 ]
Wagner, Markus [6 ]
机构
[1] Univ Gustave Eiffel, CNRS, ESIEE, LIGM, Paris, France
[2] Facebook AI Res, Paris, France
[3] Univ Littoral Cote dOpale, Dunkerque, France
[4] Univ Konstanz, Constance, Germany
[5] Univ Antananarivo, Antananarivo, Madagascar
[6] Univ Adelaide, Adelaide, SA, Australia
来源
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022 | 2022年
关键词
Generative modeling; neural networks; fairness;
D O I
10.1145/3520304.3528992
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We design general-purpose algorithms for addressing fairness issues and mode collapse in generative modeling. More precisely, to design fair algorithms for as many sensitive variables as possible, including variables we might not be aware of, we assume no prior knowledge of sensitive variables: our algorithms use unsupervised fairness only, meaning no information related to the sensitive variables is used for our fairness-improving methods. All images of faces (even generated ones) have been removed to mitigate legal risks.
引用
收藏
页码:320 / 323
页数:4
相关论文
共 50 条
  • [1] Modeling of Small Data with Unsupervised Generative Ensemble Learning
    Dolgikh, Serge
    5TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2022, 2022, 3302
  • [2] Unsupervised Generative Modeling Using Matrix Product States
    Han, Zhao-Yu
    Wang, Jun
    Fan, Heng
    Wang, Lei
    Zhang, Pan
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [3] Deep Generative Endmember Modeling: An Application to Unsupervised Spectral Unmixing
    Borsoi, Ricardo Augusto
    Imbiriba, Tales
    Moreira Bermudez, Jose Carlos
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 374 - 384
  • [4] Fairness in Unsupervised Learning
    Deepak, P.
    Jose, Joemon M.
    Sanil, V
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3511 - 3512
  • [5] Unsupervised Primitive Discovery for Improved 3D Generative Modeling
    Khan, Salman H.
    Guo, Yulan
    Hayat, Munawar
    Barnes, Nick
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9731 - 9740
  • [6] On Measuring Fairness in Generative Models
    Teo, Christopher T. H.
    Abdollahzadeh, Milad
    Cheung, Ngai-Man
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [7] Generative non-autoregressive unsupervised keyphrase extraction with neural topic modeling
    Zhu, Xun
    Lou, Yinxia
    Zhao, Jing
    Gao, Wang
    Deng, Hongtao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 120
  • [8] Generative Adversarial Phonology: Modeling Unsupervised Phonetic and Phonological Learning With Neural Networks
    Begus, Gasper
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
  • [9] GENERATIVE MODELLING FOR UNSUPERVISED SCORE CALIBRATION
    Bruemmer, Niko
    Garcia-Romero, Daniel
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [10] Unsupervised Neural Generative Semantic Hashing
    Hansen, Casper
    Hansen, Christian
    Simonsen, Jakob Grue
    Alstrup, Stephen
    Lioma, Christina
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 735 - 744