Statistical limitations in proton imaging

被引:15
作者
Collins-Fekete, Charles-Antoine [1 ,2 ]
Dikaios, Nikolaos [3 ]
Royle, Gary [1 ]
Evans, Philip M. [2 ,3 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, Gower St, London, England
[2] Natl Phys Lab, Chem Med & Environm Sci, Hampton Rd, Teddington, Middx, England
[3] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford, Surrey, England
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
proton imaging; proton radiography; proton CT; noise; dose; spatial resolution; COMPUTED-TOMOGRAPHY; MONTE-CARLO; STOPPING-POWER; X-RAY; RANGE UNCERTAINTIES; SPATIAL-RESOLUTION; MULTIPLE COULOMB; PATH FORMALISM; LIKELY PATH; LUNG-TUMORS;
D O I
10.1088/1361-6560/ab7972
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Proton imaging is a promising technology for proton radiotherapy as it can be used for: (1) direct sampling of the tissue stopping power, (2) input information for multi-modality RSP reconstruction, (3) gold-standard calibration against concurrent techniques, (4) tracking motion and (5) pre-treatment positioning. However, no end-to-end characterization of the image quality (signal-to-noise ratio and spatial resolution, blurring uncertainty) against the dose has been done. This work aims to establish a model relating these characteristics and to describe their relationship with proton energy and object size. The imaging noise originates from two processes: the Coulomb scattering with the nucleus, producing a path deviation, and the energy loss straggling with electrons. The noise is found to increases with thickness crossed and, independently, decreases with decreasing energy. The scattering noise is dominant around high-gradient edge whereas the straggling noise is maximal in homogeneous regions. Image quality metrics are found to behave oppositely against energy: lower energy minimizes both the noise and the spatial resolution, with the optimal energy choice depending on the application and location in the imaged object. In conclusion, the model presented will help define an optimal usage of proton imaging to reach the promised application of this technology and establish a fair comparison with other imaging techniques.
引用
收藏
页数:17
相关论文
共 54 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams [J].
Arbor, N. ;
Dauvergne, D. ;
Dedes, G. ;
Letang, J. M. ;
Parodi, K. ;
Quinones, C. T. ;
Testa, E. ;
Rit, S. .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (19) :7585-7599
[3]  
BARRETT H H, 1976, Computers in Biology and Medicine, V6, P307, DOI 10.1016/0010-4825(76)90068-8
[4]  
Bashkirov V, 2009, AIP CONF PROC, V1099, P460, DOI 10.1063/1.3120073
[5]   Proton computed tomography: Update on current status [J].
Bashkirov, Vladimir A. ;
Schulte, Reinhard W. ;
Penfold, Scott N. ;
Rosenfeld, Anatoly B. .
2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, :4685-4688
[6]  
Bethe H, 1953, EXP NUCL PHYS, V1
[7]   NOISE DUE TO PHOTON-COUNTING STATISTICS IN COMPUTED X-RAY TOMOGRAPHY [J].
CHESLER, DA ;
RIEDERER, SJ ;
PELC, NJ .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1977, 1 (01) :64-74
[8]   Recent results on the development of a proton computed tomography system [J].
Civinini, C. ;
Bruzzi, M. ;
Bucciolini, M. ;
Carpinelli, M. ;
Cirrone, G. A. P. ;
Cuttone, G. ;
Lo Presti, D. ;
Pallotta, S. ;
Pugliatti, C. ;
Randazzo, N. ;
Romano, F. ;
Scaringella, M. ;
Sipala, V. ;
Stancampiano, C. ;
Talamonti, C. ;
Vanzi, E. ;
Zani, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 732 :573-576
[9]   A theoretical framework to predict the most likely ion path in particle imaging [J].
Collins-Fekete, Charles-Antoine ;
Volz, Lennart ;
Portillo, Stephen K. N. ;
Beaulieu, Luc ;
Seco, Joao .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (05) :1777-1790
[10]   A maximum likelihood method for high resolution proton radiography/proton CT [J].
Collins-Fekete, Charles-Antoine ;
Brousmiche, Sebastien ;
Portillo, Stephen K. N. ;
Beaulieu, Luc ;
Seco, Joao .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (23) :8232-8248