Cytotoxicity Screening of Single-Walled Carbon Nanotubes: Detection and Removal of Cytotoxic Contaminants from Carboxylated Carbon Nanotubes

被引:61
|
作者
Wang, Ruhung [2 ]
Mikoryak, Carole [1 ]
Li, Synyoung [1 ]
Bushdiecker, David, II [2 ]
Musselman, Inga H. [2 ]
Pantano, Paul [2 ]
Draper, Rockford K. [1 ,2 ,3 ]
机构
[1] Univ Texas Dallas, Dept Mol & Cell Biol, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Chem, Richardson, TX 75080 USA
[3] Med Nanotechnol Inc, Irving, TX 75062 USA
关键词
carbon nanotubes; nanotoxicology; cytotoxicity; amorphous carbon; carboxylation; IN-VIVO; PULMONARY TOXICITY; PARTICLE TRACKING; SOLUBILIZATION; SPECTROSCOPY; VITRO; BSA;
D O I
10.1021/mp2001439
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
This study compares the cytotoxicity to cultured mammalian cells of nine different single-walled carbon nanotube (SWNT) products synthesized by a variety of methods and obtained from a cross section of vendors. A standard procedure involving sonication and centrifugation in buffered bovine serum albumin was developed to disperse all the SWNTs in a biocompatible solution to facilitate comparisons. The effect of the SWNTs on the proliferative ability of a standard cell line was then assessed. Of the nine different SWNT materials tested, only two were significantly toxic, and both were functionalized by carboxylation from different vendors. This was unexpected because carboxylation makes SWNTs more water-soluble, which would presumably correlate with better biocompatibility. However, additional purification work demonstrated that the toxic material in the carboxylated SWNT preparations could be separated from the SWNTs by filtration. The filtrate that contained the toxic activity also contained abundant small carbon fragments that had Raman signatures characteristic of amorphous carbon species, suggesting a correlation between toxicity and oxidized carbon fragments. The removal of a toxic contaminant associated with carboxylated SWNTs is important in the development of carboxylated SWNTs for pharmacological applications.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 50 条
  • [31] Photoconductivity of single-walled carbon nanotubes
    Fujiwara, A
    Matsuoka, Y
    Suematsu, H
    Ogawa, N
    Miyano, K
    Kataura, H
    Maniwa, Y
    Suzuki, S
    Achiba, Y
    NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 189 - 192
  • [32] Silylation of single-walled carbon nanotubes
    Hemraj-Benny, Tirandai
    Wong, Stanislaus S.
    CHEMISTRY OF MATERIALS, 2006, 18 (20) : 4827 - 4839
  • [33] Localization in single-walled carbon nanotubes
    Fuhrer, MS
    Cohen, ML
    Zettl, A
    Crespi, V
    SOLID STATE COMMUNICATIONS, 1999, 109 (02) : 105 - 109
  • [34] Purification of single-walled carbon nanotubes
    Pillai, Sreejarani K.
    Ray, Suprakas Sinha
    Moodley, Mathew
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (09) : 3011 - 3047
  • [35] Functionalization of single-walled carbon nanotubes
    Hirsch, A
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (11) : 1853 - 1859
  • [36] Iodination of single-walled carbon nanotubes
    Coleman, Karl S.
    Chakraborty, Amit K.
    Bailey, Sam R.
    Sloan, Jeremy
    Alexander, Morgan
    CHEMISTRY OF MATERIALS, 2007, 19 (05) : 1076 - 1081
  • [37] Nucleation of single-walled carbon nanotubes
    Fan, X
    Buczko, R
    Puretzky, AA
    Geohegan, DB
    Howe, JY
    Pantelides, ST
    Pennycook, SJ
    PHYSICAL REVIEW LETTERS, 2003, 90 (14)
  • [38] On the vibrations of single-walled carbon nanotubes
    Arghavan, S.
    Singh, A. V.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (13) : 3102 - 3122
  • [39] Bioelectrochemical single-walled carbon nanotubes
    Azamian, BR
    Davis, JJ
    Coleman, KS
    Bagshaw, CB
    Green, MLH
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (43) : 12664 - 12665
  • [40] Rings of single-walled carbon nanotubes
    Martel, R
    Shea, HR
    Avouris, P
    NATURE, 1999, 398 (6725) : 299 - 299