Stick-slip chaos detection in coupled oscillators with friction

被引:39
作者
Awrejcewicz, J [1 ]
Sendkowski, D [1 ]
机构
[1] Tech Univ Lodz, Dept Automat & Biomech, PL-90924 Lodz, Poland
关键词
chaos; Coulomb friction; Melnikov's method;
D O I
10.1016/j.ijsolstr.2005.03.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider two coupled oscillators with negative Duffing type stiffness which are self (due to friction) and externally (harmonically) excited. The fundamental solutions of the homoclinic orbit are constructed. Then, the Melnikov-Gruendler approach is used to define the Melnikov's function including smooth and stick-slip chaotic behaviour. Theoretical considerations are supported by numerical examples. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5669 / 5682
页数:14
相关论文
共 20 条
  • [11] Kunze M, 2000, LECT NOTES MATH, V1744
  • [12] Numerical study of a forced pendulum with friction
    Lamarque, CH
    Bastien, J
    [J]. NONLINEAR DYNAMICS, 2000, 23 (04) : 335 - 352
  • [13] Melnikov VK., 1963, Trans. Moscow Math. Soc, V12, P1
  • [14] STICK SLIP MOTION OF TURBINE BLADE DAMPERS
    PFEIFFER, F
    HAJEK, M
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1651): : 503 - 517
  • [15] SANDERS JA, 1980, NOTE VALIDITY MELNIK
  • [16] The multiple scales method, homoclinic bifurcation and Melnikov's method for autonomous systems
    Smith, P
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2099 - 2105
  • [17] STELTER P, 1992, NONLINEAR DYNAM, V3, P329, DOI DOI 10.1007/BF00045070
  • [18] Melnikov vector function for high-dimensional maps
    Sun, JH
    [J]. PHYSICS LETTERS A, 1996, 216 (1-5) : 47 - 52
  • [19] WEIYAO Z, 1999, NONLINEAR ANAL, V36, P401
  • [20] WIGGINS S, 1989, GLOBAL BIFURCATIONS