Associated symmetric quadrature rules

被引:7
|
作者
Ranga, AS [1 ]
deAndrade, EXL [1 ]
Phillips, GM [1 ]
机构
[1] UNIV ST ANDREWS,MATH INST,ST ANDREWS KY16 9SS,FIFE,SCOTLAND
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/0168-9274(96)00008-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a relation between two different types of symmetric quadrature rules, where one of the types is the classical symmetric interpolatory quadrature rules. Some applications of a new quadrature rule which was obtained through this relation are also considered.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 50 条
  • [31] A probabilistic model for quadrature rules
    Masjed-Jamei, Mohammad
    Dehghan, Mehdi
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1520 - 1526
  • [32] The extended symmetric block Lanczos method for matrix-valued Gauss-type quadrature rules
    Bentbib, A. H.
    Jbilou, K.
    Reichel, L.
    El Ghomari, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407
  • [33] On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a triangular surface
    Rathod, H. T.
    Nagaraja, K. V.
    Venkatesudu, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 21 - 39
  • [34] On the Application of Two Symmetric Gauss Legendre Quadrature Rules for Composite Numerical Integration Over a Tetrahedral Region
    Rathod, H. T.
    Venkatesudu, B.
    Nagaraja, K. V.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2006, 7 (06): : 445 - 459
  • [35] The set of anti-Gaussian quadrature rules for the optimal set of quadrature rules in Borges' sense
    Petrovic, Nevena Z.
    Pranic, Miroslav S.
    Stanic, Marija P.
    Mladenovic, Tatjana V. Tomovic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [36] A new class of quadrature rules for estimating the error in Gauss quadrature
    Pejcev, Aleksandar V.
    Reichel, Lothar
    Spalevic, Miodrag M.
    Spalevic, Stefan M.
    APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 206 - 221
  • [37] Quasi-symmetric orthogonal polynomials on the real line: moments, quadrature rules and invariance under Christoffel modifications
    Daniel O. Veronese
    Jairo S. Silva
    Junior A. Pereira
    Computational and Applied Mathematics, 2023, 42
  • [38] Quasi-symmetric orthogonal polynomials on the real line: moments, quadrature rules and invariance under Christoffel modifications
    Veronese, Daniel O.
    Silva, Jairo S.
    Pereira, Junior A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03):
  • [39] Szego-Lobatto quadrature rules
    Jagels, Carl
    Reichel, Lothar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 116 - 126
  • [40] Extended quadrature rules for oscillatory integrands
    Kim, KJ
    Cools, R
    Ixaru, LG
    APPLIED NUMERICAL MATHEMATICS, 2003, 46 (01) : 59 - 73