Magnetism in the three-dimensional layered Lieb lattice: Enhanced transition temperature via flat-band and Van Hove singularities

被引:29
作者
Noda, Kazuto [1 ]
Inaba, Kensuke [1 ]
Yamashita, Makoto [1 ]
机构
[1] NTT Corp, Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 06期
关键词
HUBBARD-MODEL; RENORMALIZATION-GROUP; SUPERCONDUCTIVITY; SYSTEMS; INSULATORS; STATES;
D O I
10.1103/PhysRevA.91.063610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe the enhanced magnetic transition temperatures T-c of two-component fermions in three-dimensional layered Lieb lattices, which are created in cold-atom experiments. We determine the phase diagram at half filling using the dynamical mean-field theory. The dominant mechanism of enhanced Tc gradually changes from the (delta-functional) flat-band to the (logarithmic) VanHove singularity as the interlayer hopping increases. We elucidate that the interaction induces an effective flat-band singularity from a dispersive flat (or narrow) band. We offer a general analytical framework for investigating the singularity effects, where a singularity is treated as one parameter in the density of states. This framework provides a unified description of the singularity-induced phase transitions, such as magnetism and superconductivity, where the weight of the singularity characterizes physical quantities. This treatment of the flat-band provides the transition temperature and magnetization as a universal form (i.e., including the Lambert function). We also elucidate a specific feature of the magnetic crossover in magnetization at finite temperatures.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Real-time dynamics in quantum-impurity systems: A time-dependent numerical renormalization-group approach [J].
Anders, FB ;
Schiller, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (19)
[2]   Flat bands, Dirac cones, and atom dynamics in an optical lattice [J].
Apaja, V. ;
Hyrkas, M. ;
Manninen, M. .
PHYSICAL REVIEW A, 2010, 82 (04)
[3]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[4]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[5]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[6]   Topological phases for fermionic cold atoms on the Lieb lattice [J].
Goldman, N. ;
Urban, D. F. ;
Bercioux, D. .
PHYSICAL REVIEW A, 2011, 83 (06)
[7]   TWO-DIMENSIONAL HUBBARD-MODEL - NUMERICAL-SIMULATION STUDY [J].
HIRSCH, JE .
PHYSICAL REVIEW B, 1985, 31 (07) :4403-4419
[8]   ENHANCED SUPERCONDUCTIVITY IN QUASI TWO-DIMENSIONAL SYSTEMS [J].
HIRSCH, JE ;
SCALAPINO, DJ .
PHYSICAL REVIEW LETTERS, 1986, 56 (25) :2732-2735
[9]   Bose condensation in flat bands [J].
Huber, Sebastian D. ;
Altman, Ehud .
PHYSICAL REVIEW B, 2010, 82 (18)
[10]   Superconducting transitions in flat-band systems [J].
Iglovikov, V. I. ;
Hebert, F. ;
Gremaud, B. ;
Batrouni, G. G. ;
Scalettar, R. T. .
PHYSICAL REVIEW B, 2014, 90 (09)