Screening of long-range Coulomb interaction in graphene nanoribbons: Armchair versus zigzag edges

被引:16
作者
Hadipour, H. [1 ]
Sasioglu, E. [2 ]
Bagherpour, F. [1 ]
Friedrich, C. [3 ,4 ,5 ]
Bluegel, S. [3 ,4 ,5 ]
Mertig, I [1 ]
机构
[1] Univ Guilan, Dept Phys, Rasht 413351914, Iran
[2] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Saale, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[5] JARA, D-52425 Julich, Germany
关键词
CARBON NANOTUBES; FERROMAGNETISM; TRANSITION; STATES; FORM;
D O I
10.1103/PhysRevB.98.205123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the electronic screening of the long-range Coulomb interaction in graphene nanoribbons (GNRs) with armchair and zigzag edges as a function of the ribbon width by employing ab initio calculations in conjunction with the random-phase approximation. We find that in GNRs with armchair edges quantum confinement effects lead to oscillatory behavior of the on-site screened Coulomb interaction with the ribbon width. Furthermore, the reduced dimensionality and the existence of a band gap result in a nonconventional screening of the Coulomb interaction; that is, it is screened at short distances and antiscreened at intermediate distances, and finally, it approaches the bare (unscreened) interaction at large distances. In the case of GNRs with zigzag edges the presence of edge states strongly affects the screening, which leads to a strong reduction of the effective on-site Coulomb interaction (Hubbard U) parameters at the edge. We find that the interactions turn out to be local; the nonlocal part is strongly screened due to edge states, making GNRs with zigzag edges correlated materials. On the basis of the calculated effective Coulomb interaction parameter U, we discuss the appearance of ferromagnetism at zigzag edges of GNRs within the Stoner model.
引用
收藏
页数:9
相关论文
共 81 条
  • [1] Calculations of Hubbard U from first-principles
    Aryasetiawan, F.
    Karlsson, K.
    Jepsen, O.
    Schoenberger, U.
    [J]. PHYSICAL REVIEW B, 2006, 74 (12):
  • [2] Frequency-dependent local interactions and low-energy effective models from electronic structure calculations
    Aryasetiawan, F
    Imada, M
    Georges, A
    Kotliar, G
    Biermann, S
    Lichtenstein, AI
    [J]. PHYSICAL REVIEW B, 2004, 70 (19) : 1 - 8
  • [3] Electronic structure and stability of semiconducting graphene nanoribbons
    Barone, Veronica
    Hod, Oded
    Scuseria, Gustavo E.
    [J]. NANO LETTERS, 2006, 6 (12) : 2748 - 2754
  • [4] Dirac point metamorphosis from third-neighbor couplings in graphene and related materials
    Bena, Cristina
    Simon, Laurent
    [J]. PHYSICAL REVIEW B, 2011, 83 (11):
  • [5] Analytical approach to excitonic properties of MoS2
    Berghaeuser, Gunnar
    Malic, Ermin
    [J]. PHYSICAL REVIEW B, 2014, 89 (12)
  • [6] Diluted graphene antiferromagnet
    Brey, L.
    Fertig, H. A.
    Das Sarma, S.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (11)
  • [7] Excitonic States in Narrow Armchair Graphene Nanoribbons on Gold Surfaces
    Bronner, Christopher
    Gerbert, David
    Broska, Alexander
    Tegeder, Petra
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (45) : 26168 - 26172
  • [8] Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene
    Campos, Leonardo C.
    Manfrinato, Vitor R.
    Sanchez-Yamagishi, Javier D.
    Kong, Jing
    Jarillo-Herrero, Pablo
    [J]. NANO LETTERS, 2009, 9 (07) : 2600 - 2604
  • [9] Bulk production of a new form of sp2 carbon:: Crystalline graphene nanoribbons
    Campos-Delgado, Jessica
    Romo-Herrera, Jose Manuel
    Jia, Xiaoting
    Cullen, David A.
    Muramatsu, Hiroyuki
    Kim, Yoong Ahm
    Hayashi, Takuya
    Ren, Zhifeng
    Smith, David J.
    Okuno, Yu
    Ohba, Tomonori
    Kanoh, Hirofumi
    Kaneko, Katsumi
    Endo, Morinobu
    Terrones, Humberto
    Dresselhaus, Mildred S.
    Terrones, Mauriclo
    [J]. NANO LETTERS, 2008, 8 (09) : 2773 - 2778
  • [10] Exact diagonalization study for nanographene: Modulation of charge and spin, magnetic phase diagram, and thermodynamics
    Chacko, Sajeev
    Nafday, Dhani
    Kanhere, D. G.
    Saha-Dasgupta, T.
    [J]. PHYSICAL REVIEW B, 2014, 90 (15):