Defects, such as cracks, porous structure, small grains that easily occur in the fabrication of copper indium gallium selenide (CIGS) thin film absorbers using non-vacuum process have been the major obstacle to practical application of this technology so far. A gas-pressure assisted sintering process has been developed to achieve dense, crack-free, large-grained CIGS films. The gas-pressure assisted sintering effects on the microstructure, crystalline, and electric properties were investigated by scanning electron microscopy, X-ray diffraction, and Hall-effect analyzer. A uniform microstructure with a large grain size and small amount of isolated residual pores and good electric properties can be obtained by pre-sintering at 500 degrees C under 6bar N-2 overpressure and then annealing at 500 degrees C for 20minutes under a selenium atmosphere.