Helium impurity transport on grain boundaries: Enhanced or inhibited?

被引:40
作者
Hammond, Karl D. [1 ]
Hu, Lin [2 ]
Maroudas, Dimitrios [2 ]
Wirth, Brian D. [1 ]
机构
[1] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA
[2] Univ Missouri, Dept Chem Engn, Columbia, MO 65211 USA
关键词
MOLECULAR-DYNAMICS SIMULATIONS; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; ALPHA-FE; TRANSITION-METALS; HE INTERSTITIALS; VACANCY CLUSTERS; SADDLE-POINTS; DIFFUSION; TUNGSTEN;
D O I
10.1209/0295-5075/110/52002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present atomistic simulations that show that transport of helium is inhibited on grain boundaries in tungsten. This finding is contrary to self-diffusion, or diffusion of substitutional impurities in metals, for which transport is generally enhanced along grain boundaries, but is similar to the behavior observed for hydrogen in past studies on low-angle grain boundaries, for which transport also occurs via interstitial diffusion. In the case of helium transport in tungsten, diffusion is biased toward grain boundaries, but once a helium atom or group of atoms is on a grain boundary, diffusion is impeded rather than enhanced. The reduced rate of diffusion on grain boundaries produces a higher concentration of helium in the grain boundary regions. The effect arises from the relative insolubility of helium in most materials combined with the size mismatch between helium and tungsten, which results in an interstitial diffusion mechanism rather than diffusion that relies on the presence of self-vacancies. In light of this, it is important to note that grain boundaries will not facilitate transport of helium in tungsten and other metals, but in fact that helium is immobilized on grain boundaries. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 38 条