On variational problems:: Characterization of solutions and duality

被引:17
作者
Arana-jiménez, M
Osuna-Gómez, R
Ruiz-Garzón, G
Rojas-Medar, M
机构
[1] Univ Sevilla, Dept Estadist & IO, Seville, Spain
[2] SIES Vega Guadalete, Cadiz 11580, Spain
[3] Univ Cadiz, Dept Estadist & IO, Cadiz, Spain
[4] UNICAMP, DMA, IMECC, BR-13081970 Campinas, SP, Brazil
关键词
variational problem; pseudoinvexity; critical point; duality;
D O I
10.1016/j.jmaa.2004.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new class of pseudoinvex functions for variational problems. Using this new concept, we obtain a necessary and sufficient condition for a critical point of the variational problem to be an optimal solution, illustrated with an example. Also, weak, strong and converse duality are established. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 18 条
[1]  
ALEKSEEV VM, 1982, COMMANDE OPTIMALE
[2]  
BECTOR CR, 1984, UTILITAS MATHEMATICA, V25, P171
[3]  
Bliss GA, 1946, LECT CALCULUS VARIAT
[4]  
Cesari L., 1983, OPTIMIZATION THEORY
[5]  
Clarke F., 1998, NONSMOOTH ANAL CONTR
[6]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[7]  
CRAVEN BD, 1985, J AUSTRAL MATH SOC A, V39, P97
[8]  
Gregory J, 1996, CONSTRAINED OPTIMIZA
[9]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[10]  
Mangasarian OL., 1966, SIAM J CONTROL, V4, P139, DOI DOI 10.1137/0304013