cameratrapR: An R package for estimating animal density using camera trapping data

被引:7
作者
Li, Xinhai [1 ,2 ]
Tian, Huidong [3 ]
Piao, Zhengji [4 ]
Wang, Guiming [5 ]
Xiao, Zhishu [1 ,2 ]
Sun, Yuehua [1 ,2 ]
Gao, Erhu [6 ]
Holyoak, Marcel [7 ]
机构
[1] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Yuquan Rd, Beijing 100049, Peoples R China
[3] Canc Registry Norway, Ullernchausseen 64, N-0379 Oslo, Norway
[4] Changbai Mt Acad Sci, Yanbian 133613, Peoples R China
[5] Mississippi State Univ, Dept Wildlife Fisheries & Aquaculture, Mississippi State, MS 39762 USA
[6] Natl Forestry & Grassland Adm, Acad Inventory & Planning, Beijing 100714, Peoples R China
[7] Univ Calif Davis, Dept Environm Sci & Policy, 1 Shields Ave, Davis, CA 95616 USA
基金
中国国家自然科学基金;
关键词
Camera trapping; Correlated random walk; Footprint chain; Movement pattern; Population density; R; N-MIXTURE MODELS; CHANGBAI MOUNTAIN; OCCUPANCY; CHINA; INFERENCE; RICHNESS; PATTERNS; TRAPS; RATES;
D O I
10.1016/j.ecoinf.2022.101597
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
1. Camera trapping plays an important role in wildlife surveys, and provides valuable information for estimation of population density. While mark-recapture techniques can estimate population density for species that can be individually recognized or marked, there are no robust methods to estimate density of species that cannot be individually identified. 2. We developed a new approach to estimate population density based on the simulation of individual movement within the camera grid. Simulated animals followed a correlated random walk with the movement parameters of segment length, angular deflection, movement distance and home-range size derived from empirical movement paths. Movement was simulated under a series of population densities. We used the Random Forest algorithm to determine the population density with the highest likelihood of matching the camera trap data. We developed an R package, cameratrapR, to conduct simulations and estimate population density. 3. Compared with line transect surveys and the random encounter model, cameratrapR provides more reliable estimates of wildlife density with narrower confidence intervals. Functions are provided to visualize movement paths, derive movement parameters, and plot camera trapping results. 4. The package allows researchers to estimate population sizes/densities of animals that cannot be individually identified and cameras are deployed in a grid pattern.
引用
收藏
页数:10
相关论文
共 44 条
  • [1] A guide to state-space modeling of ecological time series
    Auger-Methe, Marie
    Newman, Ken
    Cole, Diana
    Empacher, Fanny
    Gryba, Rowenna
    King, Aaron A.
    Leos-Barajas, Vianey
    Mills Flemming, Joanna
    Nielsen, Anders
    Petris, Giovanni
    Thomas, Len
    [J]. ECOLOGICAL MONOGRAPHS, 2021, 91 (04)
  • [2] Drawn out of the shadows: Surveying secretive forest species with camera trap distance sampling
    Bessone, Mattia
    Kuehl, Hjalmar S.
    Hohmann, Gottfried
    Herbinger, Ilka
    N'Goran, Kouame Paul
    Asanzi, Papy
    Da Costa, Pedro B.
    Derozier, Violette
    Fotsing, Ernest D. B.
    Beka, Bernard Ikembelo
    Iyomi, Mpongo D.
    Iyatshi, Iyomi B.
    Kafando, Pierre
    Kambere, Mbangi A.
    Moundzoho, Dissondet B.
    Wanzalire, Musubaho L. K.
    Fruth, Barbara
    [J]. JOURNAL OF APPLIED ECOLOGY, 2020, 57 (05) : 963 - 974
  • [3] Interacting multiple model particle filter
    Boers, Y
    Driessen, JN
    [J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2003, 150 (05) : 344 - 349
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Validating camera trap distance sampling for chimpanzees
    Cappelle, Noemie
    Despres-Einspenner, Marie-Lyne
    Howe, Eric J.
    Boesch, Christophe
    Kuehl, Hjalmar S.
    [J]. AMERICAN JOURNAL OF PRIMATOLOGY, 2019, 81 (03)
  • [6] SPATIALLY EXPLICIT MODELS FOR INFERENCE ABOUT DENSITY IN UNMARKED OR PARTIALLY MARKED POPULATIONS
    Chandler, Richard B.
    Royle, J. Andrew
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (02) : 936 - 954
  • [7] Ficetola G.F., 2018, N MIXTURE
  • [8] Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies
    Gardner, Beth
    Reppucci, Juan
    Lucherini, Mauro
    Royle, J. Andrew
    [J]. ECOLOGY, 2010, 91 (11) : 3376 - 3383
  • [9] Improving the random encounter model method to estimate carnivore densities using data generated by conventional camera-trap design
    Garrote, German
    Perez de Ayala, Ramon
    Alvarez, Anton
    Martin, Jose M.
    Ruiz, Manuel
    de Lillo, Santiago
    Simon, Miguel A.
    [J]. ORYX, 2021, 55 (01) : 99 - 104
  • [10] Abundance estimation of unmarked animals based on camera-trap data
    Gilbert, Neil A.
    Clare, John D. J.
    Stenglein, Jennifer L.
    Zuckerberg, Benjamin
    [J]. CONSERVATION BIOLOGY, 2021, 35 (01) : 88 - 100