The dynamics of the nucleosome: thermal effects, external forces and ATP

被引:55
作者
Blossey, Ralf [1 ]
Schiessel, Helmut [2 ]
机构
[1] Univ Sci & Technol Lille, Interdisciplinary Res Inst, USR CNRS 3078, F-59658 Villeneuve Dascq, France
[2] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
关键词
ATP-dependent processes; chromatin remodeling; DNA; kinetic proofreading; nucleosome; nucleosome breathing; nucleosome sliding; RNA-POLYMERASE-II; EQUILIBRIUM ACCESSIBILITY; HISTONE ACETYLATION; INDIVIDUAL NUCLEOSOMES; DNA; CHROMATIN; TRANSCRIPTION; STABILITY; MECHANISM; SEQUENCE;
D O I
10.1111/j.1742-4658.2011.08283.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With nucleosomes being tightly associated with the majority of eukaryotic DNA, it is essential that mechanisms are in place that can move nucleosomes 'out of the way'. A focus of current research comprises chromatin remodeling complexes, which are ATP-consuming protein complexes that, for example, pull or push nucleosomes along DNA. The precise mechanisms used by those complexes are not yet understood. Hints for possible mechanisms might be found among the various spontaneous fluctuations that nucleosomes show in the absence of remodelers. Thermal fluctuations induce the partial unwrapping of DNA from the nucleosomes and introduce twist or loop defects in the wrapped DNA, leading to nucleosome sliding along DNA. In this minireview, we discuss nucleosome dynamics from two angles. First, we describe the dynamical modes of nucleosomes in the absence of remodelers that are experimentally fairly well characterized and theoretically understood. Then, we discuss remodelers and describe recent insights about the possible schemes that they might use.
引用
收藏
页码:3619 / 3632
页数:14
相关论文
共 76 条
[1]   Deciphering the transcriptional histone acetylation code for a human gene [J].
Agalioti, T ;
Chen, GY ;
Thanos, D .
CELL, 2002, 111 (03) :381-392
[2]   Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter [J].
Agalioti, T ;
Lomvardas, S ;
Parekh, B ;
Yie, JM ;
Maniatis, T ;
Thanos, D .
CELL, 2000, 103 (04) :667-678
[3]   Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (04) :979-987
[4]   Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation [J].
Anderson, JD ;
Thåström, A ;
Widom, J .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (20) :7147-7157
[5]   Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Lowary, PT ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (04) :977-985
[6]   Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Widom, J .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (11) :3830-3839
[7]   The nature of the nucleosomal barrier to transcription: Direct observation of paused intermediates by electron cryomicroscopy [J].
Bednar, J ;
Studitsky, VM ;
Grigoryev, SA ;
Felsenfeld, O ;
Woodcock, CL .
MOLECULAR CELL, 1999, 4 (03) :377-386
[8]   Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers [J].
Bennink, ML ;
Leuba, SH ;
Leno, GH ;
Zlatanova, J ;
de Grooth, BG ;
Greve, J .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (07) :606-610
[9]   Dynamics of nucleosome remodelling by individual ACF complexes [J].
Blosser, Timothy R. ;
Yang, Janet G. ;
Stone, Michael D. ;
Narlikar, Geeta J. ;
Zhuang, Xiaowei .
NATURE, 2009, 462 (7276) :1022-U79
[10]   Kinetic proofreading of gene activation by chromatin remodeling [J].
Blossey, R. ;
Schiessel, H. .
HFSP JOURNAL, 2008, 2 (03) :167-170