Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament

被引:67
作者
Malevich, P. N. [1 ]
Maurer, R. [1 ]
Kartashov, D. [1 ,2 ]
Alisauskas, S. [1 ]
Lanin, A. A. [3 ]
Zheltikov, A. M. [3 ,4 ]
Marangoni, M. [5 ]
Cerullo, G. [5 ]
Baltuska, A. [1 ,6 ]
Pugzlys, A. [1 ,6 ]
机构
[1] TU Wien, Photon Inst, A-1040 Vienna, Austria
[2] Univ Jena, D-07743 Jena, Germany
[3] Moscow MV Lomonosov State Univ, Phys Dept, Moscow 119992, Russia
[4] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[5] Politecn Milan, IFN CNR, Dipartimento Fis, I-20133 Milan, Italy
[6] Ctr Phys Sci & Technol, LT-02300 Vilnius, Lithuania
基金
俄罗斯科学基金会; 欧洲研究理事会; 奥地利科学基金会; 俄罗斯基础研究基金会;
关键词
SCATTERING;
D O I
10.1364/OL.40.002469
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We perform a proof-of-principle demonstration of chemically specific standoff gas sensing, in which a coherent stimulated Raman signal is detected in the direction anticollinear to a two-color laser excitation beam traversing the target volume. The proposed geometry is intrinsically free space as it does not involve back-scattering (reflection) of the signal or excitation beams at or behind the target. A beam carrying an intense mid-IR femtosecond (fs) pulse and a parametrically generated picosecond (ps) UV Stokes pulse is fired in the forward direction. A fs filament, produced by the intense mid-IR pulse, emits a backward-propagating narrowband ps laser pulse at the 337 and 357 nm transitions of excited molecular nitrogen, thus supplying a counter-propagating Raman pump pulse. The scheme is linearly sensitive to species concentration and provides both transverse and longitudinal spatial resolution. (C) 2015 Optical Society of America
引用
收藏
页码:2469 / 2472
页数:4
相关论文
共 20 条
[1]   90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier [J].
Andriukaitis, Giedrius ;
Balciunas, Tadas ;
Alisauskas, Skirmantas ;
Pugzlys, Audrius ;
Baltuska, Andrius ;
Popmintchev, Tenio ;
Chen, Ming-Chang ;
Murnane, Margaret M. ;
Kapteyn, Henry C. .
OPTICS LETTERS, 2011, 36 (15) :2755-2757
[2]   Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering [J].
Bremer, Marshall T. ;
Wrzesinski, Paul J. ;
Butcher, Nathan ;
Lozovoy, Vadim V. ;
Dantus, Marcos .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[3]   High-Gain Backward Lasing in Air [J].
Dogariu, Arthur ;
Michael, James B. ;
Scully, Marlan O. ;
Miles, Richard B. .
SCIENCE, 2011, 331 (6016) :442-445
[4]   Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine [J].
Evans, Conor. L. ;
Xie, X. Sunney .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (01) :883-909
[5]  
GLADKOV SM, 1988, IZV AN SSSR FIZ+, V52, P217
[6]   Standoff spectroscopy via remote generation of a backward-propagating laser beam [J].
Hemmer, Philip R. ;
Miles, Richard B. ;
Polynkin, Pavel ;
Siebert, Torsten ;
Sokolov, Alexei V. ;
Sprangle, Phillip ;
Scully, Marlan O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (08) :3130-3134
[7]   INVERSE RAMAN SPECTRA - INDUCED ABSORPTION AT OPTICAL FREQUENCIES [J].
JONES, WJ ;
STOICHEFF, BP .
PHYSICAL REVIEW LETTERS, 1964, 13 (22) :657-&
[8]   Free-space nitrogen gas laser driven by a femtosecond filament [J].
Kartashov, Daniil ;
Alisauskas, Skirmantas ;
Andriukaitis, Giedrius ;
Pugzlys, Audrius ;
Shneider, Mikhail ;
Zheltikov, Aleksei ;
Chin, See Leang ;
Baltuska, Andrius .
PHYSICAL REVIEW A, 2012, 86 (03)
[9]   Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses [J].
Katz, O. ;
Natan, A. ;
Silberberg, Y. ;
Rosenwaks, S. .
APPLIED PHYSICS LETTERS, 2008, 92 (17)
[10]   Coherent mode-selective Raman excitation towards standoff detection [J].
Li, Haowen ;
Harris, D. Ahmasi ;
Xu, Bingwei ;
Wrzesinski, Paul J. ;
Lozovoy, Vadim V. ;
Dantus, Marcos .
OPTICS EXPRESS, 2008, 16 (08) :5499-5504