Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations ?

被引:82
作者
Marchand, P. [1 ]
Masson, J. [1 ]
Chabrier, G. [1 ,2 ]
Hennebelle, P. [3 ]
Commercon, B. [1 ]
Vaytet, N. [1 ,4 ,5 ]
机构
[1] Ecole Normale Super Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon 07, France
[2] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England
[3] Univ Paris Diderot, CEA IRFU SAp CNRS, Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France
[4] Univ Copenhagen, Niels Bohr Inst, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
[5] Univ Copenhagen, Nat Hist Museum Denmark, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
基金
欧洲研究理事会;
关键词
magnetohydrodynamics (MHD); ISM: molecules; stars: formation; COSMIC-RAY IONIZATION; MAGNETIC-FLUX LOSS; PROTOSTELLAR DISK FORMATION; PROTOPLANETARY DISKS; STAR-FORMATION; AMBIPOLAR DIFFUSION; NONISOTHERMAL STAGE; INTERSTELLAR GRAINS; BRAKING CATASTROPHE; 2ND COLLAPSE;
D O I
10.1051/0004-6361/201526780
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a detailed chemical network relevant to calculate the conditions that are characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of potassium, sodium, and hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n(H) = 10(12) cm(-3), after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical ( free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process.
引用
收藏
页数:14
相关论文
共 50 条
[11]   Gravitational collapse of magnetized clouds. I. Ideal magnetohydrodynamic accretion flow [J].
Galli, Daniele ;
Lizano, Susana ;
Shu, Frank H. ;
Allen, Anthony .
ASTROPHYSICAL JOURNAL, 2006, 647 (01) :374-381
[12]   Magnetic processes in a collapsing dense core - I. Accretion and ejection [J].
Hennebelle, P. ;
Frornang, S. .
ASTRONOMY & ASTROPHYSICS, 2008, 477 (01) :9-24
[13]   Magnetic processes in a collapsing dense core - II. Fragmentation. Is there a fragmentation crisis? [J].
Hennebelle, P. ;
Teyssier, R. .
ASTRONOMY & ASTROPHYSICS, 2008, 477 (01) :25-34
[14]   On the ionisation fraction in protoplanetary disks - I. Comparing different reaction networks [J].
Ilgner, M ;
Nelson, RP .
ASTRONOMY & ASTROPHYSICS, 2006, 445 (01) :205-U84
[15]   The Aquila prestellar core population revealed by Herschel [J].
Koenyves, V. ;
Andre, Ph. ;
Men'shchikov, A. ;
Schneider, N. ;
Arzoumanian, D. ;
Bontemps, S. ;
Attard, M. ;
Motte, F. ;
Didelon, P. ;
Maury, A. ;
Abergel, A. ;
Ali, B. ;
Baluteau, J. -P. ;
Bernard, J. -Ph. ;
Cambresy, L. ;
Cox, P. ;
Di Francesco, J. ;
di Giorgio, A. M. ;
Griffin, M. J. ;
Hargrave, P. ;
Huang, M. ;
Kirk, J. ;
Li, J. Z. ;
Martin, P. ;
Minier, V. ;
Molinari, S. ;
Olofsson, G. ;
Pezzuto, S. ;
Russeil, D. ;
Roussel, H. ;
Saraceno, P. ;
Sauvage, M. ;
Sibthorpe, B. ;
Spinoglio, L. ;
Testi, L. ;
Ward-Thompson, D. ;
White, G. ;
Wilson, C. D. ;
Woodcraft, A. ;
Zavagno, A. .
ASTRONOMY & ASTROPHYSICS, 2010, 518
[16]   DISK FORMATION ENABLED BY ENHANCED RESISTIVITY [J].
Krasnopolsky, Ruben ;
Li, Zhi-Yun ;
Shang, Hsien .
ASTROPHYSICAL JOURNAL, 2010, 716 (02) :1541-1550
[17]   The non-isothermal stage of magnetic star formation - II. Results [J].
Kunz, Matthew W. ;
Mouschovias, Telemachos Ch. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 408 (01) :322-341
[18]   THE NONISOTHERMAL STAGE OF MAGNETIC STAR FORMATION. I. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION [J].
Kunz, Matthew W. ;
Mouschovias, Telemachos Ch. .
ASTROPHYSICAL JOURNAL, 2009, 693 (02) :1895-1911
[20]   DUST EVAPORATION IN PROTOSTELLAR CORES [J].
LENZUNI, P ;
GAIL, HP ;
HENNING, T .
ASTROPHYSICAL JOURNAL, 1995, 447 (02) :848-862