Consistency of relevant cosmological deformations on all scales

被引:13
作者
Berkhahn, Felix [1 ,3 ]
Dietrich, Dennis D. [2 ]
Hofmann, Stefan [1 ,3 ]
机构
[1] Excellence Cluster Universe, D-85748 Garching, Germany
[2] Univ So Denmark, Ctr Particle Phys Phenomenol, Origins CP3, DK-5230 Odense M, Denmark
[3] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
关键词
modified gravity; gravity; cosmological perturbation theory; quantum field theory on curved space; FIELD-THEORY; MASS; GRAVITATION; GRAVITONS; RANGE;
D O I
10.1088/1475-7516/2011/09/024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using cosmological perturbation theory we show that the most relevant deformation of gravity is consistent at the linear level. In particular, we prove the absence of unitarity violating negative norm states in the weak coupling regime from sub- to super-Hubble scales. This demonstrates that the recently proposed classical self-protection mechanism of deformed gravity extends to the entire kinematical domain.
引用
收藏
页数:21
相关论文
共 24 条
[1]  
[Anonymous], ARXIV10053497
[2]   Effective field theory for massive gravitons and gravity in theory space [J].
Arkani-Hamed, N ;
Georgi, H ;
Schwartz, MD .
ANNALS OF PHYSICS, 2003, 305 (02) :96-118
[3]   Cosmological Classicalization: Maintaining Unitarity under Relevant Deformations of the Einstein-Hilbert Action [J].
Berkhahn, Felix ;
Dietrich, Dennis D. ;
Hofmann, Stefan .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[4]   Self-protection of massive cosmological gravitons [J].
Berkhahn, Felix ;
Dietrich, Dennis D. ;
Hofmann, Stefan .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (11)
[5]   Lorentz-breaking massive gravity in curved space [J].
Blas, D. ;
Comelli, D. ;
Nesti, F. ;
Pilo, L. .
PHYSICAL REVIEW D, 2009, 80 (04)
[6]  
Boulanger N., HEPTH0009109
[7]   CAN GRAVITATION HAVE A FINITE-RANGE [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW D, 1972, 6 (12) :3368-3382
[8]   Cosmological imprint of an energy component with general equation of state [J].
Caldwell, RR ;
Dave, R ;
Steinhardt, PJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1582-1585
[9]   Effective Lagrangians and universality classes of nonlinear bigravity [J].
Damour, T ;
Kogan, II .
PHYSICAL REVIEW D, 2002, 66 (10)
[10]   Resummation of Massive Gravity [J].
de Rham, Claudia ;
Gabadadze, Gregory ;
Tolley, Andrew J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (23)