Estimating Missing Values in Multivariate-Time-Series Clinical Data using Gradient Boosting Tree on Temporal and Cross-Variable Features

被引:0
|
作者
Xu, Xiao [1 ]
Wang, Junmei [1 ]
Xu, Xian [1 ]
Sun, Yuyao [1 ]
Chen, Quanhe [1 ]
Li, Xiang [1 ]
Xie, Guotong [1 ]
机构
[1] Ping Hlth Technol, Beijing, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI) | 2019年
关键词
D O I
10.1109/ichi.2019.8904830
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:541 / 543
页数:3
相关论文
共 5 条
  • [1] Using Temporal Feature Aggregation and Gradient Boosting Tree on Missing Data Imputation
    Kang, Yanni
    Jia, Xiaoyu
    Li, Xiang
    Xie, Guotong
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 565 - 566
  • [2] Comparison of Estimating Missing Values in IoT Time Series Data Using Different Interpolation Algorithms
    Zengyu Ding
    Gang Mei
    Salvatore Cuomo
    Yixuan Li
    Nengxiong Xu
    International Journal of Parallel Programming, 2020, 48 : 534 - 548
  • [3] Comparison of Estimating Missing Values in IoT Time Series Data Using Different Interpolation Algorithms
    Ding, Zengyu
    Mei, Gang
    Cuomo, Salvatore
    Li, Yixuan
    Xu, Nengxiong
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2020, 48 (03) : 534 - 548
  • [4] Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework
    Nancy, Jane Y.
    Khanna, Nehemiah H.
    Arputharaj, Kannan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 63 - 79
  • [5] A residual GRU method with deep cross fusion for Alzheimer's disease progression prediction using missing variable-length time series data
    Jia, Nana
    Jia, Tong
    Zhang, Zhiao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102