Large deviations approach to a one-dimensional, time-periodic stochastic model of pattern formation

被引:0
作者
Aguirre, Natham [1 ]
Kowalczyk, Michal [2 ,3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Dept Ingn Matemat, Casilla 170 Correo 3, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, CNRS, UMI 2807, Casilla 170 Correo 3, Santiago, Chile
关键词
Pattern formation; Large deviations; Reaction-diffusion equation; INTERFACE; EQUATION; FLUCTUATIONS;
D O I
10.1016/j.chaos.2022.112845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider the problem of pattern formation modeled by a one dimensional stochastic reactiondiffusion equation with time periodic coefficients. In particular, we apply Large Deviations methods to obtain lower bounds on the probability that certain evenly spaced patterns will develop. Our estimates are optimized when the number of interfaces scales as (epsilon root T)(-1), where epsilon is the length-scale and T is the time-scale. For large times T = rho |ln epsilon| our lower bound is of order exp(-epsilon(2 rho)), suggesting high likelihood for evenly spaced patterns whose number of interfaces is of order (epsilon root rho|ln epsilon vertical bar)(-1). Numerical simulations provide support to the idea that the more likely number of interfaces, even among unevenly spaced patterns, follows this law.
引用
收藏
页数:8
相关论文
共 15 条
[1]   Vortices nucleation by inherent fluctuations in nematic liquid crystal cells [J].
Aguilera, Esteban ;
Clerc, Marcel G. ;
Zambra, Valeska .
NONLINEAR DYNAMICS, 2022, 108 (04) :3209-3218
[2]  
BRASSESCO S, 1995, ANN I H POINCARE-PR, V31, P81
[3]  
CASSANDRO M, 1986, ANN I H POINCARE-PHY, V44, P343
[4]   Generation, propagation, and annihilation of metastable patterns [J].
Chen, XF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :399-437
[5]   Topological transitions in an oscillatory driven liquid crystal cell [J].
Clerc, Marcel G. ;
Kowalczyk, Michal ;
Zambra, Valeska .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Minimum action method for the study of rare events [J].
E, W ;
Ren, WQ ;
Vanden-Eijnden, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (05) :637-656
[7]   LARGE FLUCTUATIONS FOR A NON-LINEAR HEAT-EQUATION WITH NOISE [J].
FARIS, WG ;
JONALASINIO, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3025-3055
[8]  
Freidlin M.I., 1998, Random Perturbations of Dynamical Systems, V2nd
[9]  
Hairer M, 2015, Annales de la faculté des sciences de Toulouse Mathématiques, V24, P55, DOI [10.5802/afst.1442, 10.5802/afst.1442, DOI 10.5802/AFST.1442]
[10]   Large deviation principle for a stochastic Allen-Cahn equation [J].
Heida, Martin ;
Roeger, Matthias .
JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) :364-401