Non-classical properties of superposition thermal quantum states

被引:3
作者
Weber, P. E. R.
Lula-Rocha, V. N. A. [2 ,3 ]
Pereira, J. C. C. [1 ,3 ,4 ]
Trindade, M. A. S. [5 ]
Silva Filho, L. M. [5 ]
Martins, M. G. R. [2 ]
Santana, A. E. [1 ]
Vianna, J. D. M. [1 ,2 ]
机构
[1] Univ Brasilia, Int Ctr Condensed Matter Phys, Inst Fis, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Bahia Campus Ondina, Inst Fis, BR-40210340 Salvador, BA, Brazil
[3] Atos, Latin Amer Quantum Comp Ctr, BR-41650010 Salvador, BA, Brazil
[4] Univ Fed Reconcavo Bahia, Ctr Ciencias Exatas & Tecnol, BR-44380 Cruz Das Almas, BA, Brazil
[5] Univ Estado Bahia, Dept Ciencias Exatas & Terra, Colegiado Fis, BR-41150 Salvador, BA, Brazil
关键词
Thermofield Dynamics; Mandel factor; Wigner function; HYBRID ENTANGLEMENT; TELEPORTATION; REPEATERS;
D O I
10.1016/j.aop.2022.168986
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the statistical properties of non-classical states introduced by the superposition of a coherent with a number (Fock) state, in contact with a heat-bath. Two situations are investigated: one starts with the Gibbs distribution, such that photons are added in; the other, photons are subtracted out. Considering the use of such states in protocols for, as an example, teleportation, we identify the range of temperature, where the quantum nature of such states is stable. Finally, we propose a set of non orthonormal Bell states by adding discrete variables (Fock states) to the definition of the Bell-Cat states, which in the original definition carry only continuous variables (coherent states). We leave as perspectives the study of the viability of the use of this new set of states as building blocks of technologies which explore entanglement and teleportation protocols such as quantum repeater and quantum internet.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 58 条
[1]   CAN WE MAKE SENSE OUT OF THE MEASUREMENT PROCESS IN RELATIVISTIC QUANTUM-MECHANICS [J].
AHARONOV, Y ;
ALBERT, DZ .
PHYSICAL REVIEW D, 1981, 24 (02) :359-370
[2]  
[Anonymous], 1993, Advanced Field Theory: Micro, Macro and Thermal Physics
[3]  
[Anonymous], 1998, PHYS REV LETT
[4]   All-photonic quantum repeaters [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2015, 6
[5]   Statistics of photon-subtracted and photon-added states [J].
Barnett, Stephen M. ;
Ferenczi, Gergely ;
Gilson, Claire R. ;
Speirits, Fiona C. .
PHYSICAL REVIEW A, 2018, 98 (01)
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]   Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].
Boschi, D ;
Branca, S ;
De Martini, F ;
Hardy, L ;
Popescu, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1121-1125
[8]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[9]   Teleportation as a quantum computation [J].
Brassard, G ;
Braunstein, SL ;
Cleve, R .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 120 (1-2) :43-47
[10]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872