asymptotic whiteness;
Fisher information (FI);
high resolution;
multiterminal source coding;
quantization noise;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
A common belief in quantization theory says that the quantization noise process resulting from uniform sc alar quantization of a correlated discrete-time process tends to be white in the limit of small distortion ("high resolution"). A rule of thumb for this property to hold is that the source samples have a "smooth" joint distribution. We give a precise statement of this property, and generalize it to nonuniform quantization and to vector quantization, We show that the quantization errors resulting from independent quantizations of dependent real random variables become asymptotically uncorrelated (although not necessarily statistically independent) if the joint Fisher information (FI) under translation of the two variables is finite and the quantization cells shrink uniformly as the distortion tends to zero.
机构:
UCL, Neurol Inst, NMR Res Unit, Dept Neuroinflammat, London WC1N 3BG, EnglandUCL, Neurol Inst, NMR Res Unit, Dept Neuroinflammat, London WC1N 3BG, England
Tozer, DJ
Tofts, PS
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Neurol Inst, NMR Res Unit, Dept Neuroinflammat, London WC1N 3BG, EnglandUCL, Neurol Inst, NMR Res Unit, Dept Neuroinflammat, London WC1N 3BG, England
机构:
Univ Carlos III Madrid, Signal Theory & Commun Dept, Leganes 28911, Spain
Gregorio Maranon Hlth Res Inst, Madrid 28007, SpainUniv Carlos III Madrid, Signal Theory & Commun Dept, Leganes 28911, Spain
Koch, Tobias
Vazquez-Vilar, Gonzalo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Signal Theory & Commun Dept, Leganes 28911, Spain
Gregorio Maranon Hlth Res Inst, Madrid 28007, SpainUniv Carlos III Madrid, Signal Theory & Commun Dept, Leganes 28911, Spain