A graphene-polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells

被引:137
作者
Huang, Chao-Ting [1 ]
Shrestha, Lok Kumar [2 ]
Ariga, Katsuhiko [2 ]
Hsu, Shan-hui [1 ,3 ,4 ]
机构
[1] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei, Taiwan
[2] Natl Inst Mat Sci, WPI Ctr Mat Nanoarchitecton MANA, Supermol Grp, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Taiwan Univ, Res & Dev Ctr Med Devices, Taipei, Taiwan
[4] Natl Hlth Res Inst, Inst Cellular & Syst Med, Zhunan, Taiwan
关键词
CENTRAL-NERVOUS-SYSTEM; OSTEOGENIC DIFFERENTIATION; OXIDE; DISPERSION; GRAPHITE; PROTEIN; PROLIFERATION; NANOPARTICLES; CYTOTOXICITY; TOXICITY;
D O I
10.1039/c7tb01594a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
3D bioprinting is known as an additive manufacturing technology that builds customized structures from cells and supporting biocompatible materials for the repair of damaged tissues or organs. In this study, we prepared water-dispersible graphene and graphene oxide, which are 2D nanomaterials with high conductivity and potential applications in neural tissue engineering. Moreover, we synthesized a new biodegradable waterborne polyurethane with soft segments that mostly contained poly(epsilon-caprolactone) (2 kDa) and 20 mol% of shorter (1.5 kDa) poly(D, L-lactide) chains. This polyurethane dispersion at a solid content of 25% in a cell culture medium underwent a sol-gel transition near human body temperature with a suitable gel modulus. After this, we mixed graphene or graphene oxide with polyurethane to prepare a graphene-based nanocomposite hydrogel for neural stem cell (NSC) printing. The rheological properties of the graphene-based nanocomposite hydrogel were suitable for the printing and survival of NSCs. Furthermore, the addition of a very low content (25 ppm) of graphene nanomaterials to the hydrogel significantly enhanced the oxygen metabolism (2- to 4-fold increase) as well as the neural differentiation of NSCs. In summary, the graphene-polyurethane nanocomposite hydrogel may be a possible bioink for printing 3D cell-laden tissue constructs for neural tissue engineering.
引用
收藏
页码:8854 / 8864
页数:11
相关论文
共 47 条
[1]   Differentiation of human neural stem cells into neural networks on graphene nanogrids [J].
Akhavan, Omid ;
Ghaderi, Elham .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (45) :6291-6301
[2]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[3]   The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells [J].
Banerjee, Akhilesh ;
Arha, Manish ;
Choudhary, Soumitra ;
Ashton, Randolph S. ;
Bhatia, Surita R. ;
Schaffer, David V. ;
Kane, Ravi S. .
BIOMATERIALS, 2009, 30 (27) :4695-4699
[4]   Influence of carbon nanotube length on toxicity to zebrafish embryos [J].
Cheng, Jinping ;
Cheng, Shuk Han .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2012, 7 :3731-3739
[5]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[6]   3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels [J].
Duan, Bin ;
Hockaday, Laura A. ;
Kang, Kevin H. ;
Butcher, Jonathan T. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2013, 101 (05) :1255-1264
[7]   Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung [J].
Duch, Matthew C. ;
Budinger, G. R. Scott ;
Liang, Yu Teng ;
Soberanes, Saul ;
Urich, Daniela ;
Chiarella, Sergio E. ;
Campochiaro, Laura A. ;
Gonzalez, Angel ;
Chandel, Navdeep S. ;
Hersam, Mark C. ;
Mutlu, Goekhan M. .
NANO LETTERS, 2011, 11 (12) :5201-5207
[8]   Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing [J].
Fedorovich, Natalja E. ;
Alblas, Jacqueline ;
de Wijn, Joost R. ;
Hennink, Wim E. ;
Verbout, Ab J. ;
Dhert, Wouter J. A. .
TISSUE ENGINEERING, 2007, 13 (08) :1905-1925
[9]   Anhydrous organic dispersions of highly reduced chemically converted graphene [J].
Gambhir, Sanjeev ;
Murray, Eoin ;
Sayyar, Sepidar ;
Wallace, Gordon G. ;
Officer, David L. .
CARBON, 2014, 76 :368-377
[10]   Graphene-based nanomaterials for drug delivery and tissue engineering [J].
Goenka, Sumit ;
Sant, Vinayak ;
Sant, Shilpa .
JOURNAL OF CONTROLLED RELEASE, 2014, 173 :75-88