The inequality between mass and angular momentum for axially symmetric black holes

被引:15
作者
Dain, Sergio [1 ,2 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2008年 / 17卷 / 3-4期
关键词
black holes; axial symmetry; angular momentum; mass; extreme Kerr;
D O I
10.1142/S021827180801219X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this essay I first discuss the physical relevance of the inequality m >= root vertical bar J vertical bar for axially symmetric (nonstationary) black holes, where m is the mass and J the angular momentum of the space-time. Then, I present a proof of this inequality for the case of one spinning black hole. The proof involves a remarkable characterization of the extreme Kerr black hole as an absolute minimum of the total mass. Finally, I conjecture about the physical implications of this characterization for the nonlinear stability problem for black holes.
引用
收藏
页码:519 / 523
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 1998, Black Holes and Relativistic Stars
[3]   SOLUTION OF LOCAL MASS PROBLEM IN GENERAL RELATIVITY [J].
CHOQUETBRUHAT, Y ;
MARSDEN, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 51 (03) :283-296
[4]   Angular-momentum-mass inequality for axisymmetric black holes [J].
Dain, S .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[5]  
DAIN S, GRQC0606105
[6]   A variational principle for stationary, axisymmetric solutions of Einstein's equations [J].
Dain, Sergio .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) :6857-6871
[7]   Proof of the (local) angular momentum-mass inequality for axisymmetric black holes [J].
Dain, Sergio .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) :6845-6855
[8]   VACUUM HANDLES CARRYING ANGULAR-MOMENTUM - ELECTROVAC HANDLES CARRYING NET CHARGE [J].
FRIEDMAN, JL ;
MAYER, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (01) :109-115
[9]   The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions [J].
Gibbons, G. W. ;
Holzegel, G. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (22) :6459-6478
[10]   BLACK HOLES IN GENERAL RELATIVITY [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 25 (02) :152-&