Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases

被引:51
作者
Abunadi, Ibrahim [1 ]
Senan, Ebrahim Mohammed [2 ]
机构
[1] Prince Sultan Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11586, Saudi Arabia
[2] Dr Babasaheb Ambedkar Marathwada Univ, Dept Comp Sci & Informat Technol, Aurangabad 431004, Maharashtra, India
关键词
biomedical image processing; deep learning; dermoscopy images; machine learning; melanoma; skin diseases; AUTOMATED DETECTION; CLASSIFICATION; LESIONS;
D O I
10.3390/electronics10243158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing incidence of severe skin diseases, such as skin cancer, endoscopic medical imaging has become urgent for revealing the internal and hidden tissues under the skin. Diagnostic information to help doctors make an accurate diagnosis is provided by endoscopy devices. Nonetheless, most skin diseases have similar features, which make it challenging for dermatologists to diagnose patients accurately. Therefore, machine and deep learning techniques can have a critical role in diagnosing dermatoscopy images and in the accurate early detection of skin diseases. In this study, systems for the early detection of skin lesions were developed. The performance of the machine learning and deep learning was evaluated on two datasets (e.g., the International Skin Imaging Collaboration (ISIC 2018) and Pedro Hispano (PH2)). First, the proposed system was based on hybrid features that were extracted by three algorithms: local binary pattern (LBP), gray level co-occurrence matrix (GLCM), and wavelet transform (DWT). Such features were then integrated into a feature vector and classified using artificial neural network (ANN) and feedforward neural network (FFNN) classifiers. The FFNN and ANN classifiers achieved superior results compared to the other methods. Accuracy rates of 95.24% for diagnosing the ISIC 2018 dataset and 97.91% for diagnosing the PH2 dataset were achieved using the FFNN algorithm. Second, convolutional neural networks (CNNs) (e.g., ResNet-50 and AlexNet models) were applied to diagnose skin diseases using the transfer learning method. It was found that the ResNet-50 model fared better than AlexNet. Accuracy rates of 90% for diagnosing the ISIC 2018 dataset and 95.8% for the PH2 dataset were reached using the ResNet-50 model.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Extreme Learning Machine-Mixer: An Alternative to Multilayer Perceptron-Mixer and Its Application in Skin Cancer Detection Based on Dermoscopy Images
    Sobahi, Nebras
    Alhawsawi, Abdulsalam M.
    Damoom, Mohammed M.
    Sengur, Abdulkadir
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025,
  • [32] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Rai, Hari Mohan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27001 - 27035
  • [33] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660
  • [34] Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review
    Debelee, Taye Girma
    DIAGNOSTICS, 2023, 13 (19)
  • [35] Diagnosis of pes planus from X-ray images: Enhanced feature selection with deep learning and machine learning techniques
    Danaci, Cagla
    Avci, Derya
    Tuncer, Seda Arslan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 106
  • [36] A survey of deep learning techniques for weed detection from images
    Hasan, A. S. M. Mahmudul
    Sohel, Ferdous
    Diepeveen, Dean
    Laga, Hamid
    Jones, Michael G. K.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 184 (184)
  • [37] Machine learning and deep learning approach for medical image analysis: diagnosis to detection
    Rana, Meghavi
    Bhushan, Megha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (17) : 26731 - 26769
  • [38] An automated deep learning models for classification of skin disease using Dermoscopy images: a comprehensive study
    Vatsala Anand
    Sheifali Gupta
    Soumya Ranjan Nayak
    Deepika Koundal
    Deo Prakash
    K. D. Verma
    Multimedia Tools and Applications, 2022, 81 : 37379 - 37401
  • [39] Detection of cardiac amyloidosis on electrocardiogram images using machine learning and deep learning techniques
    Gnanadurai, Gladys Jebakumari
    Raaza, Arun
    Velayutham, Rajendran
    Palani, Sathish Kumar
    Bramwell, Ebenezer Abishek
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (04) : 554 - 576
  • [40] Performance Analysis of Machine Learning and Deep Learning Architectures on Early Stroke Detection Using Carotid Artery Ultrasound Images
    Latha, S.
    Muthu, P.
    Lai, Khin Wee
    Khalil, Azira
    Dhanalakshmi, Samiappan
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 13