Symmetric horseshoe periodic orbits in the general planar three-body problem

被引:8
作者
Bengochea, Abimael [2 ]
Falconi, Manuel [2 ]
Perez-Chavela, Ernesto [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词
General three-body problem; Horseshoe orbits; Periodic orbits; SATELLITES; DYNAMICS; SATURN; EPIMETHEUS; SYSTEMS; TADPOLE; MOTION; JANUS;
D O I
10.1007/s10509-011-0641-x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present some families of horseshoe periodic orbits in the general planar three-body problem for the case of two equal masses. The considered system is a symmetric version of the one formed by Saturn, Janus and Epimetheus. We use a mass ratio equal to 35x10(-5), corresponding to 10(5) times the Saturn-Janus mass parameter of the restricted case; for this mass ratio the satellites have a significantly bigger influence on the planet than in the classical Saturn, Janus and Epimetheus system. To obtain periodic orbits, we search those horseshoe orbits passing through two reversible configurations. A particular kind of periodic orbits where the minor bodies follow the same path is discussed.
引用
收藏
页码:399 / 408
页数:10
相关论文
共 19 条
[1]   Families of periodic horseshoe orbits in the restricted three-body problem [J].
Barrabés, E ;
Mikkola, S .
ASTRONOMY & ASTROPHYSICS, 2005, 432 (03) :1115-1129
[2]  
Bengochea A, 2009, REV MEX FIS, V55, P97
[3]   Coorbital periodic orbits in the three body problem [J].
Cors, JM ;
Hall, GR .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2003, 2 (02) :219-237
[4]   THE DYNAMICS OF TADPOLE AND HORSESHOE ORBITS .1. THEORY [J].
DERMOTT, SF ;
MURRAY, CD .
ICARUS, 1981, 48 (01) :1-11
[5]   THE DYNAMICS OF TADPOLE AND HORSESHOE ORBITS .2. THE CO-ORBITAL SATELLITES OF SATURN [J].
DERMOTT, SF ;
MURRAY, CD .
ICARUS, 1981, 48 (01) :12-22
[6]   DYNAMICS OF THE URANIAN AND SATURNIAN SATELLITE SYSTEMS - A CHAOTIC ROUTE TO MELTING MIRANDA [J].
DERMOTT, SF ;
MALHOTRA, R ;
MURRAY, CD .
ICARUS, 1988, 76 (02) :295-334
[7]  
Dormand J.R., 1980, Journal of computational and applied mathematics, V6, P19, DOI DOI 10.1016/0771-050X
[8]   SERIES EXPANSIONS FOR ENCOUNTER-TYPE SOLUTIONS OF HILLS PROBLEM [J].
HENON, M ;
PETIT, JM .
CELESTIAL MECHANICS, 1986, 38 (01) :67-100
[9]   Time-reversal symmetry in dynamical systems: A survey [J].
Lamb, JSW ;
Roberts, JAG .
PHYSICA D, 1998, 112 (1-2) :1-39
[10]   The motion of Saturn coorbital satellites in the restricted three-body problem [J].
Llibre, J ;
Ollé, M .
ASTRONOMY & ASTROPHYSICS, 2001, 378 (03) :1087-1099