Self-supervised learning for modal transfer of brain imaging

被引:1
|
作者
Cheng, Dapeng [1 ,2 ]
Chen, Chao [1 ]
Yanyan, Mao [1 ,3 ]
You, Panlu [1 ]
Huang, Xingdan [4 ]
Gai, Jiale [1 ]
Zhao, Feng [1 ,2 ]
Mao, Ning [5 ]
机构
[1] Shandong Business & Technol Univ, Sch Comp Sci & Technol, Yantai, Peoples R China
[2] Shandong Coinnovat Ctr Future Intelligent Comp, Yantai, Peoples R China
[3] China Univ Petr, Coll Oceanog & Space Informat, Qingdao, Peoples R China
[4] Shandong Business & Technol Univ, Sch Stat, Yantai, Peoples R China
[5] Yantai Yuhuangding Hosp, Dept Radiol, Yantai, Peoples R China
基金
中国国家自然科学基金;
关键词
brain imaging; multiple modal; self-supervised learning; generative adversarial network; auxiliary tasks;
D O I
10.3389/fnins.2022.920981
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Today's brain imaging modality migration techniques are transformed from one modality data in one domain to another. In the specific clinical diagnosis, multiple modal data can be obtained in the same scanning field, and it is more beneficial to synthesize missing modal data by using the diversity characteristics of multiple modal data. Therefore, we introduce a self-supervised learning cycle-consistent generative adversarial network (BSL-GAN) for brain imaging modality transfer. The framework constructs multi-branch input, which enables the framework to learn the diversity characteristics of multimodal data. In addition, their supervision information is mined from large-scale unsupervised data by establishing auxiliary tasks, and the network is trained by constructing supervision information, which not only ensures the similarity between the input and output of modal images, but can also learn valuable representations for downstream tasks.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Self-Supervised Entity Alignment Based on Multi-Modal Contrastive Learning
    Bo Liu
    Ruoyi Song
    Yuejia Xiang
    Junbo Du
    Weijian Ruan
    Jinhui Hu
    IEEE/CAA Journal of Automatica Sinica, 2022, 9 (11) : 2031 - 2033
  • [32] Inter-Modal Masked Autoencoder for Self-Supervised Learning on Point Clouds
    Liu, Jiaming
    Wu, Yue
    Gong, Maoguo
    Liu, Zhixiao
    Miao, Qiguang
    Ma, Wenping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3897 - 3908
  • [33] Self-Supervised Learning by Cross-Modal Audio-Video Clustering
    Alwassel, Humam
    Mahajan, Dhruv
    Korbar, Bruno
    Torresani, Lorenzo
    Ghanem, Bernard
    Tran, Du
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [34] Multi-modal Food Recommendation Using Clustering and Self-supervised Learning
    Zhang, Yixin
    Zhou, Xin
    Meng, Qianwen
    Zhu, Fanglin
    Xu, Yonghui
    Shen, Zhiqi
    Cui, Lizhen
    PRICAI 2024: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2025, 15281 : 269 - 281
  • [35] Highly Interactive Self-Supervised Learning for Multi-Modal Trajectory Prediction
    Xie, Wenda
    Liu, Yahui
    Zhao, Hongxia
    Guo, Chao
    Dai, Xingyuan
    Lv, Yisheng
    IFAC PAPERSONLINE, 2024, 58 (10): : 231 - 236
  • [36] A New Self-supervised Method for Supervised Learning
    Yang, Yuhang
    Ding, Zilin
    Cheng, Xuan
    Wang, Xiaomin
    Liu, Ming
    INTERNATIONAL CONFERENCE ON COMPUTER VISION, APPLICATION, AND DESIGN (CVAD 2021), 2021, 12155
  • [37] Attentive Transfer Learning via Self-supervised Learning for Cervical Dysplasia Diagnosis
    Chae, Jinyeong
    Zimmermann, Roger
    Kim, Dongho
    Kim, Jihie
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2021, 17 (03): : 453 - 461
  • [38] How Well Do Self-Supervised Models Transfer to Medical Imaging?
    Anton, Jonah
    Castelli, Liam
    Chan, Mun Fai
    Outters, Mathilde
    Tang, Wan Hee
    Cheung, Venus
    Shukla, Pancham
    Walambe, Rahee
    Kotecha, Ketan
    JOURNAL OF IMAGING, 2022, 8 (12)
  • [39] Self-Supervised Intra-Modal and Cross-Modal Contrastive Learning for Point Cloud Understanding
    Wu, Yue
    Liu, Jiaming
    Gong, Maoguo
    Gong, Peiran
    Fan, Xiaolong
    Qin, A. K.
    Miao, Qiguang
    Ma, Wenping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1626 - 1638
  • [40] Self-Supervised Transfer Learning for Remote Wear Evaluation in Machine Tool Elements With Imaging Transmission Attenuation
    Chen, Peng
    Ma, Zhigang
    Xu, Chaojun
    Jin, Yaqiang
    Zhou, Chengning
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 23045 - 23054