On C2-cofiniteness of parafermion vertex operator algebras

被引:26
作者
Dong, Chongying [2 ,3 ]
Wang, Qing [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Sichuan Univ, Sch Math, Chengdu 610065, Peoples R China
基金
美国国家科学基金会;
关键词
Lie algebras; Vertex operator algebras; MODULAR-INVARIANCE; REPRESENTATIONS; REGULARITY; VIRASORO;
D O I
10.1016/j.jalgebra.2010.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that any locally regular vertex operator algebra is C-2-cofinite and the regularity of parafermion vertex operator algebras associated to integrable highest weight modules for affine Kac-Moody algebra A(1)((1)) implies the C-2-cofiniteness of parafermion vertex operator algebras associated to integrable highest weight modules for any affine Kac-Moody algebra. In particular, the parafermion vertex operator algebra associated to an integrable highest weight module of small level for any affine Kac-Moody algebra is C-2-cofinite and has only finitely many irreducible modules. Also, the parafermion vertex operator algebras with level 1 are determined explicitly. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:420 / 431
页数:12
相关论文
共 29 条
[1]   Rationality, regularity, and C2-cofiniteness [J].
Abe, T ;
Buhl, G ;
Dong, CY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (08) :3391-3402
[3]  
DONG C, 2008, BULG J PHYS S, V35, P25
[4]  
Dong C., 1994, Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, V56 II, P295
[5]  
Dong C., 1993, PROGR MATH, V112, px+202
[6]   The Structure of Parafermion Vertex Operator Algebras: General Case [J].
Dong, Chongying ;
Wang, Qing .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 299 (03) :783-792
[7]   The structure of parafermion vertex operator algebras [J].
Dong, Chongying ;
Lam, Ching Hung ;
Wang, Qing ;
Yamada, Hiromichi .
JOURNAL OF ALGEBRA, 2010, 323 (02) :371-381
[8]   W-algebras related to parafermion algebras [J].
Dong, Chongying ;
Lam, Ching Hung ;
Yamada, Hiromichi .
JOURNAL OF ALGEBRA, 2009, 322 (07) :2366-2403
[9]   Twisted representations of vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :571-600
[10]   Regularity of rational vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
ADVANCES IN MATHEMATICS, 1997, 132 (01) :148-166