Self-assembly of ionic and non-ionic surfactants in type IV cerium nitrate and urea based deep eutectic solvent

被引:20
作者
Manasi, Iva [1 ]
Andalibi, Mohammad R. [2 ]
Atri, Ria S. [1 ,3 ]
Hooton, Jake [1 ]
King, Stephen M. [4 ]
Edler, Karen J. [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AX, Avon, England
[2] Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0AS, England
[3] Univ Bath, EPSRC Ctr Doctoral Training Sustainable Chem Tech, Bath BA2 7AY, Avon, England
[4] Rutherford Appleton Lab, STFC, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
SODIUM DODECYL-SULFATE; MICELLE FORMATION; AQUEOUS-SOLUTIONS; NEUTRON-SCATTERING; DODECYLTRIMETHYLAMMONIUM BROMIDE; CATIONIC SURFACTANTS; AGGREGATION BEHAVIOR; LIQUIDS; MICELLIZATION; TENSION;
D O I
10.1063/5.0059238
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding and manipulating micelle morphology are key to exploiting surfactants in various applications. Recent studies have shown surfactant self-assembly in a variety of Deep Eutectic Solvents (DESs) where both the nature of surfactants and the interaction of the surfactant molecule with the solvent components influence the size, shape, and morphology of the micelles formed. So far, micelle formation has only been reported in type III DESs, consisting solely of organic species. In this work, we have explored the self-assembly of cationic surfactant dodecyl trimethylammonium nitrate/bromide (C(12)TANO(3)/C(12)TAB), anionic surfactant sodium dodecyl sulfate (SDS), and non-ionic surfactants hexaethylene glycol monododecyl ether (C12EO6) and octaethylene glycol monohexadecyl ether (C16EO8) in a type IV DES comprising metal salt, cerium (III) nitrate hexahydrate, and a hydrogen bond donor, urea, in the molar ratio 1:3.5. C(12)TANO(3), C(12)TAB, C12EO6, and C16EO8 form spherical micelles in the DES with the micelle size dependent on both the surfactant alkyl chain length and the head group, whereas SDS forms cylindrical micelles. We hypothesize that the difference in the micelle shape can be explained by counterion stabilization of the SDS headgroup by polycations in the DES compared to the nitrate/bromide anion interaction in the case of cationic surfactants or molecular interaction of the urea and the salting out effect of (CeNO3)(3) in the DES on the alkyl chains/polyethoxy headgroup for non-ionic surfactants. These studies deepen our understanding of amphiphile self-assembly in this novel, ionic, and hydrogen-bonding solvent, raising the opportunity to use these structures as liquid crystalline templates to generate porosity in metal oxides (ceria) that can be synthesized using these DESs.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Ionic Liquid Surfactant Mediated Structural Transitions and Self-Assembly of Bovine Serum Albumin in Aqueous Media: Effect of Functionalization of Ionic Liquid Surfactants [J].
Singh, Gurbir ;
Kang, Tejwant Singh .
JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (33) :10573-10585
[42]   Self-assembly of choline-based surface-active ionic liquids and concentration-dependent enhancement in the enzymatic activity of cellulase in aqueous medium [J].
Singh, Manpreet ;
Singh, Gurbir ;
Kaur, Harmandeep ;
Muskan ;
Kumar, Sugam ;
Aswal, Vinod Kumar ;
Kang, Tejwant Singh .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (22) :16218-16233
[43]   Promising Route for the Development of a Computational Framework for Self-Assembly and Phase Behavior Prediction of Ionic Surfactants Using MARTINI [J].
Anogiannakis, Stefanos D. ;
Petris, Panagiotis C. ;
Theodorou, Doros N. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (03) :556-567
[44]   Influence of salt type and ionic strength on self-assembly of dextran sulfate-ciprofloxacin nanoplexes [J].
Kutscher, Marika ;
Cheow, Wean Sin ;
Werner, Vera ;
Lorenz, Udo ;
Ohlsen, Knut ;
Meinel, Lorenz ;
Hadinoto, Kunn ;
Germershaus, Oliver .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2015, 486 (1-2) :21-29
[45]   Rotational dynamics, ionic conductivity, and glass formation in a ZnCl2-based deep eutectic solvent [J].
Schulz, A. ;
Lunkenheimer, P. ;
Loidl, A. .
JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (05)
[46]   Coarse-Grained Molecular Dynamics Simulation of Self-Assembly and Surface Adsorption of Ionic Surfactants Using an Implicit Water Model [J].
Wang, Shihu ;
Larson, Ronald G. .
LANGMUIR, 2015, 31 (04) :1262-1271
[47]   Stretchable and conductive physical eutectogel based on type IV deep eutectic solvent through cation-bridging [J].
Huang, Wun-Jhe ;
Vo, Trung Hieu ;
Sheng, Yu-Jane ;
Tsao, Heng-Kwong .
JOURNAL OF MOLECULAR LIQUIDS, 2024, 396
[48]   Self-Assembly of 2-Hydroxyethyl-1H-imidazolium-Based Surface Active Ionic Liquids and Utilization of Their Aqueous Solution in Superactivity of Cytochrome-c [J].
Singh, Manpreet ;
Kaur, Rajwinder ;
Kumar, Sugam ;
Aswal, Vinod Kumar ;
Singh, Gurbir ;
Kang, Tejwant Singh .
JOURNAL OF PHYSICAL CHEMISTRY B, 2025, 129 (26) :6661-6673
[49]   Preparation gemini non-ionic surfactants-based polyethylene oxide with variable hydrophobic tails for controlling the catalytic and antimicrobial activity of AgNPs [J].
Shaban, Samy M. ;
Hamed, Eman H. ;
Elsharif, Asma M. ;
Elged, Ahmed H. ;
El Basiony, N. M. .
JOURNAL OF MOLECULAR LIQUIDS, 2022, 367
[50]   Effect of different counterions on the self-assembly structures and properties of imidazole based ionic liquids surfactant: A molecular dynamics study [J].
Li, Xin ;
Song, Xiaoju ;
Li, Li ;
Wei, Yaoyao ;
Liu, Guokui ;
Xia, Qiying .
JOURNAL OF MOLECULAR LIQUIDS, 2023, 391