Increased Power for the Analysis of Label-free LC-MS/MS Proteomics Data by Combining Spectral Counts and Peptide Peak Attributes

被引:38
作者
Dicker, Lee [2 ]
Lin, Xihong [2 ]
Ivanov, Alexander R. [1 ,3 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Genet & Complex Dis, Boston, MA 02115 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, HSPH Prote Resource, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
TANDEM MASS-SPECTROMETRY; PROTEIN EXPRESSION; ABSOLUTE PROTEIN; ACCURATE MASS; ABUNDANCE; PLATFORM; MODEL; IDENTIFICATIONS; QUANTIFICATION; BOTTOM;
D O I
10.1074/mcp.M110.002774
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics provides a wealth of information about proteins present in biological samples. In bottom-up LC-MS/MS-based proteomics, proteins are enzymatically digested into peptides prior to query by LC-MS/MS. Thus, the information directly available from the LC-MS/MS data is at the peptide level. If a protein-level analysis is desired, the peptide-level information must be rolled up into protein-level information. We propose a principal component analysis-based statistical method, ProPCA, for efficiently estimating relative protein abundance from bottom-up label-free LC-MS/MS data that incorporates both spectral count information and LC-MS peptide ion peak attributes, such as peak area, volume, or height. ProPCA may be used effectively with a variety of quantification platforms and is easily implemented. We show that ProPCA outperformed existing quantitative methods for peptide-protein roll-up, including spectral counting methods and other methods for combining LC-MS peptide peak attributes. The performance of ProPCA was validated using a data set derived from the LC-MS/MS analysis of a mixture of protein standards (the UPS2 proteomic dynamic range standard introduced by The Association of Biomolecular Resource Facilities Proteomics Standards Research Group in 2006). Finally, we applied ProPCA to a comparative LC-MS/MS analysis of digested total cell lysates prepared for LC-MS/MS analysis by alternative lysis methods and show that ProPCA identified more differentially abundant proteins than competing methods. Molecular & Cellular Proteomics 9:2704-2718, 2010.
引用
收藏
页码:2704 / 2718
页数:15
相关论文
共 43 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS [J].
Bellew, Matthew ;
Coram, Marc ;
Fitzgibbon, Matthew ;
Igra, Mark ;
Randolph, Tim ;
Wang, Pei ;
May, Damon ;
Eng, Jimmy ;
Fang, Ruihua ;
Lin, ChenWei ;
Chen, Jinzhi ;
Goodlett, David ;
Whiteaker, Jeffrey ;
Paulovich, Amanda ;
McIntosh, Martin .
BIOINFORMATICS, 2006, 22 (15) :1902-1909
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]  
CASELLA G, 2002, STAT INFERENCE, P374
[5]   Significance Analysis of Spectral Count Data in Label-free Shotgun Proteomics [J].
Choi, Hyungwon ;
Fermin, Damian ;
Nesvizhskii, Alexey I. .
MOLECULAR & CELLULAR PROTEOMICS, 2008, 7 (12) :2373-2385
[6]   MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification [J].
Cox, Juergen ;
Mann, Matthias .
NATURE BIOTECHNOLOGY, 2008, 26 (12) :1367-1372
[7]   The biological impact of mass-spectrometry-based proteomics [J].
Cravatt, Benjamin F. ;
Simon, Gabriel M. ;
Yates, John R., III .
NATURE, 2007, 450 (7172) :991-1000
[8]   Review - Mass spectrometry and protein analysis [J].
Domon, B ;
Aebersold, R .
SCIENCE, 2006, 312 (5771) :212-217
[9]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989
[10]  
GELMAN A, 2004, BAYESIAN DATA ANAL, P120