Physical Strategy to Determine Absolute Electrochemiluminescence Quantum Efficiencies of Coreactant Systems Using a Photon-Counting Photomultiplier Device

被引:33
作者
Chu, Kenneth [1 ]
Adsetts, Jonathan R. [1 ]
Ma, Jing [1 ]
Zhang, Congyang [1 ]
Hesari, Mahdi [1 ]
Yang, Liuqing [1 ]
Ding, Zhifeng [1 ]
机构
[1] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ELECTROGENERATED CHEMILUMINESCENCE; LUMINESCENCE; DEPENDENCE; ECL;
D O I
10.1021/acs.jpcc.1c06342
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, using a photon-counting device, we outline our physical strategy to determine absolute electrochemiluminescence (or electrogenerated chemiluminescence, ECL) quantum efficiencies of coreactant systems in comparison with those in annihilation pathways. This absolute method addresses many of the issues with existing relative ECL efficiency measurements, including inconsistencies stemming from nonstandardized experimental conditions and incompatible luminophore systems. The absolute efficiency of the Ru(bpy)(3)(2+)/ tri-n-propylamine (TPrA) ECL coreactant system taken as an example was found to be 10.0 +/- 1.1% for the first time using 10 Hz potential stepping at a TPrA concentration of 10 miM, which quantifies a 3-fold enhancement in efficiency compared to that in the annihilation pathway. Our physical and analytical technique is anticipated to be an immediate and impactful methodology in the expanding field of ECL research.
引用
收藏
页码:22274 / 22282
页数:9
相关论文
共 42 条
[1]   Film Electrochemiluminescence Controlled by Interfacial Reactions Along with Aggregation-, Matrix-Coordination-, and Crystallization-Induced Emissions [J].
Adsetts, Jonathan R. ;
Ding, Zhifeng .
CHEMPLUSCHEM, 2021, 86 (01) :155-165
[2]   Electrochemiluminescence and Photoluminescence of Carbon Quantum Dots Controlled by Aggregation-Induced Emission, Aggregation-Caused Quenching, and Interfacial Reactions [J].
Adsetts, Jonathan Ralph ;
Hoesterey, Salena ;
Gao, Chenjun ;
Love, David A. ;
Ding, Zhifeng .
LANGMUIR, 2020, 36 (47) :14432-14442
[3]   Best practices for measuring emerging light-emitting diode technologies [J].
Anaya, Miguel ;
Rand, Barry P. ;
Holmes, Russell J. ;
Credgington, Dan ;
Bolink, Henk J. ;
Friend, Richard H. ;
Wang, Jianpu ;
Greenham, Neil C. ;
Stranks, Samuel D. .
NATURE PHOTONICS, 2019, 13 (12) :818-821
[4]  
Bard A.J., 2004, Electrogenerated Chemiluminescence
[5]   CONSTRUCTION AND CALIBRATION OF AN APPARATUS FOR ABSOLUTE MEASUREMENT OF TOTAL LUMINESCENCE AT LOW LEVELS [J].
BEZMAN, R ;
FAULKNER, LR .
ANALYTICAL CHEMISTRY, 1971, 43 (13) :1749-&
[6]   NOVEL CHEMILUMINESCENT ELECTRON-TRANSFER REACTION [J].
CHANDROSS, EA ;
SONNTAG, FI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1964, 86 (15) :3179-&
[7]   Inner filter effect-based fluorescent sensing systems: A review [J].
Chen, Shuai ;
Yu, Yong-Liang ;
Wang, Jian-Hua .
ANALYTICA CHIMICA ACTA, 2018, 999 :13-26
[8]  
Cho K. G., 2020, ADV FUNCT MATER, V30
[9]   Tracking Magnetic Rotating Objects by Bipolar Electrochemiluminescence [J].
Dauphin, Alice L. ;
Akchach, Abdelmounaim ;
Voci, Silvia ;
Kuhn, Alexander ;
Xu, Guobao ;
Bouffier, Laurent ;
Sojic, Neso .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (18) :5318-5324
[10]  
Hass G., 1972, AM I PHYS HDB, P6