SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption

被引:92
作者
Dong, Shun [1 ]
Zhang, Xinghong [1 ]
Li, Xiutao [2 ]
Chen, Jingmao [2 ]
Hu, Ping [1 ]
Han, Jiecai [1 ]
机构
[1] Harbin Inst Technol, Sci & Technol Adv Composites Special Environm Lab, Harbin 150001, Peoples R China
[2] China Acad Launch Vehicle Technol, Beijing 100076, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SiC whiskers; MnO; Reduced graphene oxide; Electromagnetic wave absorption; ELECTROMAGNETIC-WAVE ABSORPTION; PERFORMANCE; LIGHTWEIGHT; NANOWIRES; NANOSTRUCTURES; CONDUCTIVITY; MICROSPHERES; FABRICATION; NANORINGS; DESIGN;
D O I
10.1016/j.cej.2019.123817
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An excellent electromagnetic (EM) wave absorber with lightweight, broad bandwidth and high-efficiency absorption is urgently demanded for solving the EM interference pollution. A MnO nanoparticles@SiC whiskers/reduced graphene oxide (MnONPs@SiCw/RGO) hybrid composite with enhanced EM wave absorption performance was successfully synthesized by a hydrothermal strategy followed with thermal treatment. The results demonstrate that the annealing temperature was critical for the morphology of MnONPs, resulting in different impedance matching and attenuation constant. Correspondingly, the MnONPs@SiCw/RGO hybrid composite obtained at 800 degrees C presented the best EM wave absorption property, whose minimum reflection loss (RLmin) reached - 54.04 dB at 17.9 GHz with ultrathin matching thickness of only 1.59 nm and the effective absorption bandwidth (EAB) could be dramatically broadened to 7.4 GHz, covering the entire Ku-band. Additionally, almost full-band absorption with a qualified bandwidth of 14.2 GHz could be achieved by changing the sample thickness from 1.5 to 5.0 mm. The enhancement results should be mainly attributed to the synergistic and complementary effects of the conduction loss and polarization relaxation loss. Our work exhibits that the hierarchical MnONPs@SiCw/RGO hybrid composites might as a promising candidate for high-efficiency microwave absorbers, and provides an effective way for constructing microwave absorber in the future.
引用
收藏
页数:11
相关论文
共 50 条
[1]   Core-shell SiC/SiO2 whisker reinforced polymer composite with high dielectric permittivity and low dielectric loss [J].
Bi, Jiayu ;
Gu, Yizhuo ;
Zhang, Zhenchong ;
Wang, Shaokai ;
Li, Min ;
Zhang, Zuoguang .
MATERIALS & DESIGN, 2016, 89 :933-940
[2]   Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion [J].
Cao, Maosheng ;
Wang, Xixi ;
Cao, Wenqiang ;
Fang, Xiaoyong ;
Wen, Bo ;
Yuan, Jie .
SMALL, 2018, 14 (29)
[3]   Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang ;
Ma, Lin ;
Li, Hui ;
Li, He ;
Huang, Feihe ;
Xu, Zhude ;
Zhang, Qingbo ;
Lee, Jim-Yang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (17) :6251-6257
[4]   Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam [J].
Cheng, Yehong ;
Hu, Ping ;
Zhou, Shanbao ;
Yan, Liwen ;
Sun, Boqian ;
Zhang, Xinghong ;
Han, Wenbo .
CARBON, 2018, 132 :430-443
[5]   Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler [J].
Dai, Wen ;
Yu, Jinhong ;
Wang, Yi ;
Song, Yingze ;
Alam, Fakhr E. ;
Nishimura, Kazuhito ;
Lin, Cheng-Te ;
Jiang, Nan .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) :4884-4891
[6]   Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J].
Ding, Ding ;
Wang, Ying ;
Li, Xuandong ;
Qiang, Rong ;
Xu, Ping ;
Chu, Wenlei ;
Han, Xijiang ;
Du, Yunchen .
CARBON, 2017, 111 :722-732
[7]   Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties [J].
Han, Meikang ;
Yin, Xiaowei ;
Hou, Zexin ;
Song, Changqing ;
Li, Xinliang ;
Zhang, Litong ;
Cheng, Laifei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (13) :11803-11810
[8]   Electrospinning of Fe/SiC Hybrid Fibers for Highly Efficient Microwave Absorption [J].
Hou, Yi ;
Cheng, Laifei ;
Zhang, Yani ;
Yang, Yong ;
Deng, Chaoran ;
Yang, Zhihong ;
Chen, Qi ;
Wang, Peng ;
Zheng, Lianxi .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) :7265-7271
[9]   Preparation, characterization and microwave absorption properties of bamboo-like β-SiC nanowhiskers by molten-salt synthesis [J].
Hu, Wenlong ;
Wang, Liuding ;
Wu, Qiaofeng ;
Wu, Hongjing .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2014, 25 (12) :5302-5308
[10]   Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites [J].
Kong, Luo ;
Yin, Xiaowei ;
Yuan, Xiaoyan ;
Zhang, Yajun ;
Liu, Xingmin ;
Cheng, Laifei ;
Zhang, Litong .
CARBON, 2014, 73 :185-193