Generalized Harnack Inequality for Nonhomogeneous Elliptic Equations

被引:13
作者
Julin, Vesa [1 ]
机构
[1] Univ Jyvaskyla, Jyvaskyla, Finland
基金
芬兰科学院;
关键词
REGULARITY;
D O I
10.1007/s00205-014-0817-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with nonlinear elliptic equations in nondivergence form F(D(2)u, Du, x) = 0 where F has a drift term which is not Lipschitz continuous. Under this condition the equations are nonhomogeneous and nonnegative solutions do not satisfy the classical Harnack inequality. This paper presents a new generalization of the Harnack inequality for such equations. As a corollary we obtain the optimal Harnack type of inequality for p(x)-harmonic functions which quantifies the strong minimum principle.
引用
收藏
页码:673 / 702
页数:30
相关论文
共 24 条
[11]   The strong minimum principle for quasisuperminimizers of non-standard growth [J].
Harjulehto, P. ;
Hasto, P. ;
Latvala, V. ;
Toivanen, O. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05) :731-742
[12]   Harnack's inequality for quasiminimizers with nonstandard growth conditions [J].
Harjulehto, Petteri ;
Kuusi, Tuomo ;
Lukkari, Teemu ;
Marola, Niko ;
Parviainen, Mikko .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :504-520
[13]  
Imbert C., 2013, J EUEOPEAN IN PRESS
[14]   Equivalence of viscosity and weak solutions for the p(x)-Laplacian [J].
Juutinen, Petri ;
Lukkari, Teemu ;
Parviainen, Mikko .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06) :1471-1487
[15]  
KOIKE S, 2002, ADV DIFFERENTIAL EQU, V7, P493
[16]  
KRYLOV N.V., 1979, DOKL AKAD NAUK SSSR, V20, P253
[17]   A CERTAIN PROPERTY OF SOLUTIONS OF PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS [J].
KRYLOV, NV ;
SAFONOV, MV .
MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 16 (01) :151-164
[18]   Small perturbation solutions for elliptic equations [J].
Savin, Ovidiu .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (04) :557-578
[19]   Solvability of Uniformly Elliptic Fully Nonlinear PDE [J].
Sirakov, Boyan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) :579-607
[20]  
Trudinger N.S., 1988, Rev. Mat. Iberoam., P453