Second-Order Necessary Optimality Conditions for the Mayer Problem Subject to a General Control Constraint

被引:12
作者
Frankowska, Helene [1 ]
Osmolovskii, Nikolai P. [2 ,3 ,4 ]
机构
[1] Univ Paris Diderot, Univ Paris 06, Sorbonne Univ, CNRS,IMJ PRG,UMR 7586,Sorbonne Paris Cite, Case 247,4 Pl Jussieu, F-75252 Paris, France
[2] Univ Technol & Humanities, PL-26600 Radom, Poland
[3] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
[4] Moscow State Univ Civil Engn, Moscow, Russia
来源
ANALYSIS AND GEOMETRY IN CONTROL THEORY AND ITS APPLICATIONS | 2015年
关键词
VARIATIONAL APPROACH;
D O I
10.1007/978-3-319-06917-3_7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to second-order necessary optimality conditions for the Mayer optimal control problem with an arbitrary closed control set U subset of R-m. Admissible controls are supposed to be measurable and essentially bounded. Using second order tangents to U, we first show that if (u) over bar(.) is an optimal control, then an associated quadratic functional should be nonnegative for all elements in the second order jets to U along (u) over bar(.). Then we specify the obtained results in the case when U is given by a finite number of C-2-smooth inequalities with positively independent gradients of active constraints. The novelty of our approach is due, on one hand, to the arbitrariness of U. On the other hand, the proofs we propose are quite straightforward and do not use embedding of the problem into a class of infinite dimensional mathematical programming type problems. As an application we derive new second-order necessary conditions for a free end-time optimal control problem in the case when an optimal control is piecewise Lipschitz.
引用
收藏
页码:171 / 207
页数:37
相关论文
共 22 条
[1]  
[Anonymous], 1964, Mathematical theory of optimal processes
[2]   QUADRATIC ORDER CONDITIONS FOR BANG-SINGULAR EXTREMALS [J].
Aronna, M. Soledad ;
Bonnans, J. Frederic ;
Dmitruk, Andrei V. ;
Lotito, Pablo A. .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (03) :511-546
[3]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[4]  
Bonnans JF, 2010, J CONVEX ANAL, V17, P885
[5]  
Cesari L., 1983, Applications of Mathematics, V17
[6]  
Dubovicki A. J., 1965, . Vyisl. Mat i Mat. Fiz, V5, P395
[7]  
Frankowska H., 2013, Serdica Math. J., V39, P233
[8]  
Frankowska H, 2006, J CONVEX ANAL, V13, P299
[9]   POINTWISE SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS FOR THE MAYER PROBLEM WITH CONTROL CONSTRAINTS [J].
Frankowska, Helene ;
Tonon, Daniela .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (05) :3814-3843
[10]  
HESTENES MR, 1964, CALCULUS VARIATIONS