Finite element approximation of surfactant spreading on a thin film

被引:29
作者
Barrett, JW
Garcke, H
Nurnberg, R
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Inst Angew Math, D-53115 Bonn, Germany
关键词
thin film flow; surfactant; fourth order degenerate parabolic system; finite elements; convergence analysis;
D O I
10.1137/S003614290139799X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a fully practical finite element approximation of the following system of nonlinear degenerate parabolic equations: partial derivativeu/partial derivativet + 1/2 del.(u(2)del[sigma(v)]) - 1/3del.(u(3)delw) = 0, w = -cDeltau + au(-3) - delta u(-v), partial derivativev/partial derivativet + del.(uvdel[sigma(v)]) - rhoDeltav - 1/2 del.(u(2) vdelw) = 0. The above models a surfactant-driven thin film flow in the presence of both attractive, a > 0, and repulsive, delta > 0 with. > 3, van der Waals forces, where u is the height of the film, v is the concentration of the insoluble surfactant monolayer, and sigma(v) := 1 - v is the typical surface tension. Here rho greater than or equal to 0 and c > 0 are the inverses of the surface Peclet number and the modified capillary number. In addition to showing stability bounds for our approximation, we prove convergence in one space dimension when rho > 0 and either a = delta = 0 or delta > 0. Furthermore, iterative schemes for solving the resulting nonlinear discrete system are discussed. Finally, some numerical experiments are presented.
引用
收藏
页码:1427 / 1464
页数:38
相关论文
共 32 条
[1]   CONE CONDITIONS AND PROPERTIES OF SOBOLEV SPACES [J].
ADAMS, RA ;
FOURNIER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (03) :713-734
[2]   Finite element approximation of a degenerate Allen-Cahn/Cahn-Hilliard system [J].
Barrett, JW ;
Blowey, JF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1598-1624
[3]  
Barrett JW, 2002, INTERFACE FREE BOUND, V4, P277
[4]   Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy [J].
Barrett, JW ;
Blowey, JF .
NUMERISCHE MATHEMATIK, 1997, 77 (01) :1-34
[5]   Finite element approximation of a fourth order nonlinear degenerate parabolic equation [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
NUMERISCHE MATHEMATIK, 1998, 80 (04) :525-556
[6]   Finite element approximation of the Cahn-Hilliard equation with degenerate mobility [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :286-318
[7]   On fully practical finite element approximations of degenerate Cahn-Hilliard systems [J].
Barrett, JW ;
Blowey, JF ;
Garcke, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04) :713-748
[8]   HIGHER-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
BERNIS, F ;
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :179-206
[9]  
Bernis F., 1995, Free Boundary Problems: Theory and Applications, V323, P40
[10]  
Bertozzi A. L, 1994, Trends and Perspectives in Applied Mathematics, P155