Hybrid textual-visual relevance learning for content-based image retrieval

被引:20
作者
Cui, Chaoran [1 ]
Lin, Peiguang [1 ]
Nie, Xiushan [1 ]
Yin, Yilong [2 ]
Zhu, Qingfeng [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan 250014, Shandong, Peoples R China
[2] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China
关键词
Content-based image retrieval; Tag completion; Semantics modeling; Rank aggregation; Sparse linear method; REPRESENTATIONS;
D O I
10.1016/j.jvcir.2017.03.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning effective relevance measures plays a crucial role in improving the performance of content-based image retrieval (CBIR) systems. Despite extensive research efforts for decades, how to discover and incorporate semantic information of images still poses a formidable challenge to real-world CBIR systems. In this paper, we propose a novel hybrid textual-visual relevance learning method, which mines textual relevance from image tags and combines textual relevance and visual relevance for CBIR. To alleviate the sparsity and unreliability of tags, we first perform tag completion to fill the missing tags as well as correct noisy tags of images. Then, we capture users' semantic cognition to images by representing each image as a probability distribution over the permutations of tags. Finally, instead of early fusion, a ranking aggregation strategy is adopted to sew up textual relevance and visual relevance seamlessly. Extensive experiments on two benchmark datasets well verified the promise of our approach. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:367 / 374
页数:8
相关论文
共 50 条
[41]   Localized content-based image retrieval [J].
Rahmani, Rouhollah ;
Goldman, Sally A. ;
Zhang, Hui ;
Cholleti, Sharath R. ;
Fritts, Jason E. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (11) :1902-1912
[42]   Content-based image retrieval speedup [J].
Fadaei, Sadegh ;
Rashno, Abdolreza ;
Rashno, Elyas .
2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
[43]   Combining positive and negative examples in relevance feedback for content-based image retrieval [J].
Kherfi, ML ;
Ziou, D ;
Bernardi, A .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2003, 14 (04) :428-457
[44]   Aggregate Similarity Queries in Relevance Feedback Methods for Content-based Image Retrieval [J].
Razente, Humberto L. ;
Barioni, Maria Camila N. ;
Traina, Agma J. M. ;
Traina, Caetano, Jr. .
APPLIED COMPUTING 2008, VOLS 1-3, 2008, :869-874
[45]   Text-based relevance-feedback for content-based image retrieval systems [J].
Raez, Arturo Montejo ;
Ortega, Jose Manuel Perea ;
Galiano, Manuel Carlos Diaz ;
Lopez, L. Alfonso Urena .
PROCESAMIENTO DEL LENGUAJE NATURAL, 2009, (43) :177-183
[46]   A hybrid probabilistic framework for content-based image retrieval with feature weighting [J].
Ziou, Djemel ;
Hamri, Touati ;
Boutemedjet, Sabri .
PATTERN RECOGNITION, 2009, 42 (07) :1511-1519
[47]   Learning image representations for content-based image retrieval of radiotherapy treatment plans [J].
Huang, Charles ;
Vasudevan, Varun ;
Pastor-Serrano, Oscar ;
Islam, Md Tauhidul ;
Nomura, Yusuke ;
Dubrowski, Piotr ;
Wang, Jen-Yeu ;
Schulz, Joseph B. ;
Yang, Yong ;
Xing, Lei .
PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (09)
[48]   A collaborative, long-term learning approach to using relevance feedback in content-based image retrieval systems [J].
Nedovic, V ;
Marques, O .
Proceedings ELMAR-2005, 2005, :143-146
[49]   Saliency Inside: Learning Attentive CNNs for Content-Based Image Retrieval [J].
Wei, Shikui ;
Liao, Lixin ;
Li, Jia ;
Zheng, Qinjie ;
Yang, Fei ;
Zhao, Yao .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) :4580-4593
[50]   Random forest-based active learning for content-based image retrieval [J].
Bhosle N. ;
Kokare M. .
Bhosle, Nilesh (bhoslenp@gmail.com), 1600, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (13) :72-88