Existence of Solutions for Second-Order Hamiltonian Systems with Resonance

被引:0
作者
Hu, Tingting [1 ]
机构
[1] Nanjing Univ Chinese Med, Coll Informat Technol, Nanjing 210023, Peoples R China
关键词
Critical point; Linking; Second-order Hamiltonian system; Index theory; Periodic solutions; MINIMAL PERIOD PROBLEM;
D O I
10.1007/s40840-018-0692-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2014, J. Pipan and M. Schechter discussed periodic solutions for second-order Hamiltonian systems with resonance. In this paper, we will generalize their results. To this end, we will first establish an index theory for second-order linear Hamiltonian systems with coefficient matrix in L-1. Then we propose generalized assumptions. We also investigate multiple solutions for symmetric second-order Hamiltonian systems.
引用
收藏
页码:425 / 439
页数:15
相关论文
共 24 条
[1]   The existence of periodic solutions of non-autonomous second-order Hamiltonian systems [J].
Aizmahin, Nurbek ;
An, Tianqing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) :4862-4867
[2]  
[Anonymous], 1989, Applied Mathematical Sciences
[3]  
Chang K.C., 1986, Critical Point Theory and Applications
[4]   Index theory, nontrivial solutions, and asymptotically linear second-order Hamiltonian systems [J].
Dong, YJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (02) :233-255
[5]   Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations [J].
Dong, Yujun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (1-2) :75-109
[6]  
Dunford N., 1958, Linear operators. Part I. General theory, V1
[7]  
Guan W., 2015, J DIFFER EQUATIONS, V99, P1072
[8]   Existence solutions for second order Hamiltonian systems [J].
Li, Lin ;
Schechter, Martin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 :283-296
[9]   THE MINIMAL PERIOD PROBLEM OF PERIODIC-SOLUTIONS FOR AUTONOMOUS SUPERQUADRATIC 2ND-ORDER HAMILTONIAN-SYSTEMS [J].
LONG, YM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 111 (01) :147-174
[10]   THE MINIMAL PERIOD PROBLEM OF CLASSICAL HAMILTONIAN-SYSTEMS WITH EVEN POTENTIALS [J].
LONG, YM .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (06) :605-626