A variational formulation for barotropic quasi-geostrophic flows

被引:2
作者
Bokhove, O
Vanneste, J
Warn, T
机构
[1] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
[2] Univ Toronto, Dept Phys, Toronto, ON, Canada
[3] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada
关键词
Lagrangian variational principle; Rossby-number expansion; quasi-geostrophic equations;
D O I
10.1080/03091929808245468
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive simplified balanced equations by introducing perturbation expansions in the variational principle of a low-order fluid model and in that of the rapidly rotating shallow-water equations. In the case of the shallow-water equations, this provides a constrained variational principle for the barotropic quasi-geostrophic equations which is based on the Lagrangian description of the fluid. Our results thus show that the quasigeostrophic equations can be derived systematically in the context of Lagrangian variational principles.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 12 条
[1]   Extended-geostrophic Hamiltonian models for rotating shallow water motion [J].
Allen, JS ;
Holm, DD .
PHYSICA D, 1996, 98 (2-4) :229-248
[2]  
Bokhove O, 1996, J ATMOS SCI, V53, P276, DOI 10.1175/1520-0469(1996)053<0276:OHBDAT>2.0.CO
[3]  
2
[4]  
Gill AE, 1982, ATMOSPHERE OCEAN DYN, P662
[5]  
LORENZ EN, 1986, J ATMOS SCI, V43, P1547, DOI 10.1175/1520-0469(1986)043<1547:OTEOAS>2.0.CO
[6]  
2
[7]  
MCINTYRE ME, 1996, UNPUB HAMILTONIAN BA, P48
[8]  
Pedlosky J., 1987, Geophysical fluid dynamics, DOI [10.1007/978-1-4612-4650-3, DOI 10.1007/978-1-4612-4650-3]
[9]   PRACTICAL USE OF HAMILTONS PRINCIPLE [J].
SALMON, R .
JOURNAL OF FLUID MECHANICS, 1983, 132 (JUL) :431-444
[10]   NEW EQUATIONS FOR NEARLY GEOSTROPHIC FLOW [J].
SALMON, R .
JOURNAL OF FLUID MECHANICS, 1985, 153 (APR) :461-477