The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants

被引:141
|
作者
Cai, Ronghao [1 ]
Dai, Wei [1 ]
Zhang, Congsheng [1 ]
Wang, Yan [1 ]
Wu, Min [1 ]
Zhao, Yang [1 ]
Ma, Qing [1 ]
Xiang, Yan [1 ,2 ]
Cheng, Beijiu [1 ]
机构
[1] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Forestry & Landscape Architecture, Lab Modern Biotechnol, Hefei 230036, Anhui, Peoples R China
关键词
ABA; Maize; RNA-seq; Salt stress; WRKY transcription factor; ZmWRKY17; ABSCISIC-ACID; DROUGHT TOLERANCE; OSMOTIC-STRESS; FACTOR FAMILY; NICOTIANA-BENTHAMIANA; FUNCTIONAL-ANALYSIS; ABIOTIC STRESSES; ENHANCES DROUGHT; GENE-EXPRESSION; WATER-STRESS;
D O I
10.1007/s00425-017-2766-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.
引用
收藏
页码:1215 / 1231
页数:17
相关论文
共 50 条
  • [31] The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus
    Jiang, Yuanzhong
    Tong, Shaofei
    Chen, Ningning
    Liu, Bao
    Bai, Qiuxian
    Chen, Yang
    Bi, Hao
    Zhang, Zhiyang
    Lou, Shangling
    Tang, Hu
    Liu, Jianquan
    Ma, Tao
    Liu, Huanhuan
    PLANT JOURNAL, 2021, 105 (05) : 1258 - 1273
  • [32] A WRKY Transcription Factor CbWRKY27 Negatively Regulates Salt Tolerance in Catalpa bungei
    Gu, Jiaojiao
    Lv, Fenni
    Gao, Lulu
    Jiang, Shengji
    Wang, Qing
    Li, Sumei
    Yang, Rutong
    Li, Ya
    Li, Shaofeng
    Wang, Peng
    FORESTS, 2023, 14 (03):
  • [33] A maize stress-responsive Di19 transcription factor, ZmDi19-1, confers enhanced tolerance to salt in transgenic Arabidopsis
    Zhang, Xingen
    Cai, Huilin
    Lu, Meng
    Wei, Qiye
    Xu, Lijuan
    Bo, Chen
    Ma, Qing
    Zhao, Yang
    Cheng, Beijiu
    PLANT CELL REPORTS, 2019, 38 (12) : 1563 - 1578
  • [34] The moso bamboo WRKY transcription factor, PheWRKY86, regulates drought tolerance in transgenic plants
    Wu, Min
    Zhang, Kaimei
    Xu, Yuzeng
    Wang, Linna
    Liu, Hongxia
    Qin, Zilu
    Xiang, Yan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 170 : 180 - 191
  • [35] The Novel Rose MYB Transcription Factor RhMYB96 Enhances Salt Tolerance in Transgenic Arabidopsis
    Jiang, Xinqiang
    Li, Shaocui
    Ding, Aiqin
    Zhang, Zhujun
    Hao, Qing
    Wang, Kuiling
    Liu, Qingchao
    Liu, Qinghua
    PLANT MOLECULAR BIOLOGY REPORTER, 2018, 36 (03) : 406 - 417
  • [36] Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana
    Qin, Yuxiang
    Tian, Yanchen
    Han, Lu
    Yang, Xinchao
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 441 (02) : 476 - 481
  • [37] AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis
    Bhuria, Monika
    Goel, Parul
    Kumar, Sanjay
    Singh, Anil Kumar
    PHYSIOLOGIA PLANTARUM, 2022, 174 (01)
  • [38] AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling
    Fang, Qing
    Wang, Qiong
    Mao, Hui
    Xu, Jing
    Wang, Ying
    Hu, Hao
    He, Shuai
    Tu, Junchu
    Cheng, Chao
    Tian, Guozheng
    Wang, Xianqiang
    Liu, Xiaopeng
    Zhang, Chi
    Luo, Keming
    PLANT CELL REPORTS, 2018, 37 (11) : 1499 - 1511
  • [39] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qianqian Qin
    Yujun Zhao
    Jiajun Zhang
    Li Chen
    Weina Si
    Haiyang Jiang
    BMC Plant Biology, 22
  • [40] Soybean transcription factor GmNFYB1 confers abiotic stress tolerance to transgenic Arabidopsis plants
    Li, W.
    Mallano, A. I.
    Bo, L.
    Wang, T.
    Nisa, Z.
    Li, Y.
    CANADIAN JOURNAL OF PLANT SCIENCE, 2017, 97 (03) : 501 - 515