The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants

被引:141
|
作者
Cai, Ronghao [1 ]
Dai, Wei [1 ]
Zhang, Congsheng [1 ]
Wang, Yan [1 ]
Wu, Min [1 ]
Zhao, Yang [1 ]
Ma, Qing [1 ]
Xiang, Yan [1 ,2 ]
Cheng, Beijiu [1 ]
机构
[1] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Forestry & Landscape Architecture, Lab Modern Biotechnol, Hefei 230036, Anhui, Peoples R China
关键词
ABA; Maize; RNA-seq; Salt stress; WRKY transcription factor; ZmWRKY17; ABSCISIC-ACID; DROUGHT TOLERANCE; OSMOTIC-STRESS; FACTOR FAMILY; NICOTIANA-BENTHAMIANA; FUNCTIONAL-ANALYSIS; ABIOTIC STRESSES; ENHANCES DROUGHT; GENE-EXPRESSION; WATER-STRESS;
D O I
10.1007/s00425-017-2766-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.
引用
收藏
页码:1215 / 1231
页数:17
相关论文
共 50 条
  • [21] The maize WRKY transcription factor ZmWRKY64 confers cadmium tolerance in Arabidopsis and maize (Zea mays L.)
    Lei Gu
    Yunyan Hou
    Yiyue Sun
    Xuanxuan Chen
    Guangyi Wang
    Hongcheng Wang
    Bin Zhu
    Xuye Du
    Plant Cell Reports, 2024, 43
  • [22] The maize WRKY transcription factor ZmWRKY64 confers cadmium tolerance in Arabidopsis and maize (Zea mays L.)
    Gu, Lei
    Hou, Yunyan
    Sun, Yiyue
    Chen, Xuanxuan
    Wang, Guangyi
    Wang, Hongcheng
    Zhu, Bin
    Du, Xuye
    PLANT CELL REPORTS, 2024, 43 (02)
  • [23] Transcription Factor CaSBP12 Negatively Regulates Salt Stress Tolerance in Pepper (Capsicum annuum L.)
    Zhang, Huai-Xia
    Zhu, Wen-Chao
    Feng, Xiao-Hui
    Jin, Jing-Hao
    Wei, Ai-Min
    Gong, Zhen-Hui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (02)
  • [24] A Heat Shock Transcription Factor TrHSFB2a of White Clover Negatively Regulates Drought, Heat and Salt Stress Tolerance in Transgenic Arabidopsis
    Iqbal, Muhammad Zafar
    Jia, Tong
    Tang, Tao
    Anwar, Muhammad
    Ali, Asif
    Hassan, Muhammad Jawad
    Zhang, Youzhi
    Tang, Qilin
    Peng, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [25] Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis
    Ding, Zhong Jie
    Yan, Jing Ying
    Xu, Xiao Yan
    Yu, Di Qiu
    Li, Gui Xin
    Zhang, Shu Qun
    Zheng, Shao Jian
    PLANT JOURNAL, 2014, 79 (01) : 13 - 27
  • [26] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qin, Qianqian
    Zhao, Yujun
    Zhang, Jiajun
    Chen, Li
    Si, Weina
    Jiang, Haiyang
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [27] A Novel Sweetpotato WRKY Transcription Factor, IbWRKY2, Positively Regulates Drought and Salt Tolerance in Transgenic Arabidopsis
    Zhu, Hong
    Zhou, Yuanyuan
    Zhai, Hong
    He, Shaozhen
    Zhao, Ning
    Liu, Qingchang
    BIOMOLECULES, 2020, 10 (04)
  • [28] Maize transcription factor ZmNAC2 enhances osmotic stress tolerance in transgenic Arabidopsis
    Chen, Yiyao
    Li, Xinglin
    Xie, Xin
    Liu, Lijun
    Fu, Jingye
    Wang, Qiang
    JOURNAL OF PLANT PHYSIOLOGY, 2023, 282
  • [29] Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis
    Ying, Sheng
    Zhang, Deng-Feng
    Fu, Jing
    Shi, Yun-Su
    Song, Yan-Chun
    Wang, Tian-Yu
    Li, Yu
    PLANTA, 2012, 235 (02) : 253 - 266
  • [30] Transcription factor ZmWRKY20 interacts with ZmWRKY115 to repress expression of ZmbZIP111 for salt tolerance in maize
    Bo, Chen
    Cai, Ronghao
    Fang, Xiu
    Wu, Hao
    Ma, Zhongxian
    Yuan, Haotian
    Cheng, Beijiu
    Fan, Jun
    Ma, Qing
    PLANT JOURNAL, 2022, 111 (06) : 1660 - 1675