Influence of the photovoltaic effect on optical limiting with lithium niobate

被引:1
|
作者
Cook, G [1 ]
Jones, DC [1 ]
Duignan, JP [1 ]
机构
[1] Def Evaluat & Res Agcy, Malvern WR14 3PS, Worcs, England
来源
LINEAR, NONLINEAR, AND POWER-LIMITING ORGANICS | 2000年 / 4106卷
关键词
photorefractives; two-beam coupling; optical limiting; lithium niobate;
D O I
10.1117/12.408518
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe:LiNbO3 in a simple focal plane geometry has demonstrated efficient optical limiting through two-beam coupling. The magnitude of the observed optical limiting implies an optical gain coefficient which greatly exceeds that predicted by standard photorefractive diffusion theory. Experimental measurements have confirmed that the optical gain coefficient is approximately five times grater than can be accounted for through normal charge diffusion. The photovoltaic effect has been identified as the most likely mechanism for generating the observed high optical gain. We have made a direct observation of the role of the photovoltaic effect in counter-propagating two-beam coupling in photorefractive iron doped lithium niobate. We have found experimentally that the photovoltaic effect is indeed the dominant mechanism for two beam coupling in an optical limiting geometry. The contribution to optical limiting from the photovoltaic effect is approximately five times greater than that arising from diffusion mechanisms alone, in agreement with earlier optical gain measurements.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 50 条
  • [31] Optical Properties of Copper-Doped Lithium Niobate Crystals
    V. S. Gorelik
    M. N. Palatnikov
    A. Yu. Pyatyshev
    N. V. Sidorov
    A. V. Skrabatun
    Inorganic Materials, 2018, 54 : 1013 - 1020
  • [32] Relationship between the optical inhomogeneity and microdomain structure of lithium niobate
    A. B. Smirnov
    B. B. Ped’ko
    Crystallography Reports, 2005, 50 : 124 - 126
  • [33] Complex study of the structural and optical homogeneity of lithium niobate crystals
    Sidorov, N. V.
    Palatnikov, M. N.
    Yanichev, A. A.
    Gabain, A. A.
    Makarova, O. V.
    Pikul', O. Yu.
    CRYSTALLOGRAPHY REPORTS, 2014, 59 (05) : 724 - 731
  • [34] Optical Properties of Copper-Doped Lithium Niobate Crystals
    Gorelik, V. S.
    Palatnikov, M. N.
    Pyatyshev, A. Yu
    Sidorov, N., V
    Skrabatun, A., V
    INORGANIC MATERIALS, 2018, 54 (10) : 1013 - 1020
  • [35] Relationship between the optical inhomogeneity and microdomain structure of lithium niobate
    Smirnov, AB
    Ped'ko, BB
    CRYSTALLOGRAPHY REPORTS, 2005, 50 (01) : 124 - 126
  • [36] Optical Gain in Erbium Lithium Niobate Titanium Diffused Waveguides
    Ejzak, Garrett A.
    Prather, Dennis W.
    NOVEL IN-PLANE SEMICONDUCTOR LASERS X, 2011, 7953
  • [37] Lithium niobate - Electrooptic guided-wave optical switch
    Okayama, H
    ACTIVE AND PASSIVE OPTICAL COMPONENTS FOR WDM COMMUNICATION, 2001, 4532 : 73 - 85
  • [38] Structural and Optical Homogeneity in Lithium Niobate Crystals of Low Photorefractivity
    Sidorov, N. V.
    Palatnikov, M. N.
    Teplyakova, N. A.
    Yanichev, A. A.
    Kruk, A. A.
    Makarova, O. V.
    Pikoul, O. Yu.
    Bormanis, K.
    FERROELECTRICS, 2015, 484 (01) : 55 - 61
  • [39] Optical Properties of Ultrathin Au Films on Lithium Niobate Substrate
    Danylov, A. B.
    Petrus, R. Yu.
    Haiduchok, V. G.
    Vakiv, M. M.
    2016 INTERNATIONAL CONFERENCE ON ELECTRONICS AND INFORMATION TECHNOLOGY (EIT), 2016,
  • [40] Lithium niobate as an optical waveguide and its application to integrated optics
    Fujii, Yoichi
    Otsuka, Yukiko
    Ikeda, Akira
    IEICE TRANSACTIONS ON ELECTRONICS, 2007, E90C (05): : 1081 - 1089