Influence of the photovoltaic effect on optical limiting with lithium niobate

被引:1
|
作者
Cook, G [1 ]
Jones, DC [1 ]
Duignan, JP [1 ]
机构
[1] Def Evaluat & Res Agcy, Malvern WR14 3PS, Worcs, England
来源
LINEAR, NONLINEAR, AND POWER-LIMITING ORGANICS | 2000年 / 4106卷
关键词
photorefractives; two-beam coupling; optical limiting; lithium niobate;
D O I
10.1117/12.408518
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe:LiNbO3 in a simple focal plane geometry has demonstrated efficient optical limiting through two-beam coupling. The magnitude of the observed optical limiting implies an optical gain coefficient which greatly exceeds that predicted by standard photorefractive diffusion theory. Experimental measurements have confirmed that the optical gain coefficient is approximately five times grater than can be accounted for through normal charge diffusion. The photovoltaic effect has been identified as the most likely mechanism for generating the observed high optical gain. We have made a direct observation of the role of the photovoltaic effect in counter-propagating two-beam coupling in photorefractive iron doped lithium niobate. We have found experimentally that the photovoltaic effect is indeed the dominant mechanism for two beam coupling in an optical limiting geometry. The contribution to optical limiting from the photovoltaic effect is approximately five times greater than that arising from diffusion mechanisms alone, in agreement with earlier optical gain measurements.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 50 条
  • [21] Influence of radical ions on optical limiting effect in solutions of polycyclic compounds
    Gryaznova, MV
    Danilov, VV
    Khrebtov, AI
    Ermolaeva, GN
    Shilov, VB
    Shakhverdov, TA
    LASER OPTICS 2003: HIGH-POWER GAS LASERS, 2003, 5479 : 218 - 222
  • [22] Influence of dopants on nonvolatile holographic storage in lithium niobate
    Fu Bo
    Zhang Guo-Quan
    Liu Xiang-Ming
    Shen Yan
    Xu Qing-Jun
    Kong Yong-Fa
    Chen Shao-Lin
    Xu Jing-Jun
    ACTA PHYSICA SINICA, 2008, 57 (05) : 2946 - 2951
  • [23] Influence of short-wavelength radiation of the visible range on the optical transmission of photorefractive lithium niobate samples
    Karpushin P.A.
    Kruglov V.G.
    Gusev A.V.
    Shandarov V.M.
    Kip D.
    Rüter C.
    Russian Physics Journal, 2006, 49 (11) : 1236 - 1240
  • [24] Effect of annealing on the structure and phase composition of thin electro-optical lithium niobate films
    D. A. Kiselev
    R. N. Zhukov
    A. S. Bykov
    M. I. Voronova
    K. D. Shcherbachev
    M. D. Malinkovich
    Yu. N. Parkhomenko
    Inorganic Materials, 2014, 50 : 419 - 422
  • [25] Design of Flat Optical Frequency Comb Based on Lithium Niobate Optical Waveguide
    Liu Yu
    Deng Yi
    Wei Hang
    Wu Chunjiang
    Feng Suchun
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (13):
  • [26] Modeling of cluster formation in nonlinear optical lithium niobate crystal
    V. M. Voskresenskii
    O. R. Starodub
    N. V. Sidorov
    M. N. Palatnikov
    B. N. Mavrin
    Crystallography Reports, 2011, 56
  • [27] Spectral Engineering of Optical Microresonators in Anisotropic Lithium Niobate Crystal
    Zhang, Ke
    Chen, Yikun
    Sun, Wenzhao
    Chen, Zhaoxi
    Feng, Hanke
    Wang, Cheng
    ADVANCED MATERIALS, 2024, 36 (17)
  • [28] ERDA study of H incorporated into lithium niobate optical layers
    Budnar, M
    Zorko, B
    Pelicon, P
    Spirková-Hradilová, J
    Kolarova-Nekvindova, P
    Turcicová, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2000, 161 : 568 - 572
  • [29] Growth and optical characteristics of pure and doped lithium niobate crystals
    Gebre, T
    Aggarwal, MD
    Batra, AK
    Edwards, ME
    Lal, RB
    OPTICAL COMPONENTS AND MATERIALS, 2004, 5350 : 156 - 162
  • [30] Optical and RF Characterization of a Lithium Niobate Photonic Crystal Modulator
    Lu, Huihui
    Qiu, Wentao
    Guyot, Clement
    Ulliac, Gwenn
    Merolla, Jean-Marc
    Baida, Fadi
    Bernal, Maria-Pilar
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (13) : 1332 - 1335