Short-term individual residential load forecasting using an enhanced machine learning-based approach based on a feature engineering framework: A comparative study with deep learning methods

被引:19
作者
Forootani, Ali [1 ]
Rastegar, Mohammad [1 ]
Sami, Ashkan [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Power & Control, Shiraz, Iran
[2] Shiraz Univ, Dept Comp Sci & Engn & Informat Technol, Shiraz, Iran
关键词
Residential load forecasting; Feature selection; Outlier detection; Machine learning; Deep learning; FEATURE-SELECTION; REGRESSION;
D O I
10.1016/j.epsr.2022.108119
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate short-term forecasting of the individual residential load is a challenging task due to the nonlinear behavior of the residential customer. Moreover, there are a large number of features that have impact on the energy consumption of the residential load. Recently, deep learning algorithms are widely used for short-term load forecasting (STLF) of residential load. Although deep learning algorithms are capable of achieving promising results due to their ability in feature extraction, machine learning algorithms are also prone to obtain satisfactory results with lower complexity and easier implementation. Identifying the most dominant features which have the highest impact on residential load is a pragmatic measure to boost the accuracy of STLF. But deep learning algorithms use feature extraction, which leads to the loss of data interpretability due to transforming the data. This paper proposes to improve the accuracy of the individual residential STLF using an enhanced machine learning-based approach via a feature-engineering framework. To this end, various datasets and features such as historical load and climate features are collected. Afterward, correlation analysis and outlier detection via the k nearest neighbor algorithm are deployed to implement outlier detection. In the next stage, feature selection algorithms are used to identify the foremost dominant features. Additionally, this paper conducts a comparative study between the proposed approach and state-of-the-art deep learning architectures. Eventually, the isolation forest algorithm is used to verify the effectiveness of the proposed approach by identifying anomalous samples and comparing the results of the proposed approach with those of deep learning algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Adaptive individual residential load forecasting based on deep learning and dynamic mirror descent
    Han, Fujia
    Wang, Xiaohui
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [42] Short-term load forecasting using machine learning and periodicity decomposition
    El Khantach, Abdelkarim
    Hamlich, Mohamed
    Belbounaguia, Nour Eddine
    AIMS ENERGY, 2019, 7 (03) : 382 - 394
  • [43] A Machine Learning-Based Framework with Enhanced Feature Selection and Resampling for Improved Intrusion Detection
    Malik, Fazila
    Khan, Qazi Waqas
    Rizwan, Atif
    Alnashwan, Rana
    Atteia, Ghada
    MATHEMATICS, 2024, 12 (12)
  • [44] Machine learning-based very short-term load forecasting in microgrid environment: evaluating the impact of high penetration of PV systems
    Amir Rafati
    Mahmood Joorabian
    Elaheh Mashhour
    Hamid Reza Shaker
    Electrical Engineering, 2022, 104 : 2667 - 2677
  • [45] Deep Learning Based Short-Term Total Cloud Cover Forecasting
    Bandara, Ishara
    Zhang, Li
    Mistry, Kamlesh
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [46] Deep learning based short-term load forecasting incorporating calendar and weather information
    Jiang, Weiwei
    INTERNET TECHNOLOGY LETTERS, 2022, 5 (04)
  • [47] A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting
    Gbemou, Shab
    Eynard, Julien
    Thil, Stephane
    Guillot, Emmanuel
    Grieu, Stephane
    ENERGIES, 2021, 14 (11)
  • [48] Deep learning and ensemble learning models for individual appliance level short-term load forecasting in buildings
    Guenana, Massinissa
    Van Binh Dinh
    Neu, Thibault
    Guyomarch, David
    Hoang-Anh Dang
    2023 ASIA MEETING ON ENVIRONMENT AND ELECTRICAL ENGINEERING, EEE-AM, 2023,
  • [49] Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System
    Pramono, Sholeh Hadi
    Rohmatillah, Mahdin
    Maulana, Eka
    Hasanah, Rini Nur
    Hario, Fakhriy
    ENERGIES, 2019, 12 (17)
  • [50] Machine learning-based very short-term load forecasting in microgrid environment: evaluating the impact of high penetration of PV systems
    Rafati, Amir
    Joorabian, Mahmood
    Mashhour, Elaheh
    Shaker, Hamid Reza
    ELECTRICAL ENGINEERING, 2022, 104 (04) : 2667 - 2677