Short-term individual residential load forecasting using an enhanced machine learning-based approach based on a feature engineering framework: A comparative study with deep learning methods

被引:19
|
作者
Forootani, Ali [1 ]
Rastegar, Mohammad [1 ]
Sami, Ashkan [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Power & Control, Shiraz, Iran
[2] Shiraz Univ, Dept Comp Sci & Engn & Informat Technol, Shiraz, Iran
关键词
Residential load forecasting; Feature selection; Outlier detection; Machine learning; Deep learning; FEATURE-SELECTION; REGRESSION;
D O I
10.1016/j.epsr.2022.108119
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate short-term forecasting of the individual residential load is a challenging task due to the nonlinear behavior of the residential customer. Moreover, there are a large number of features that have impact on the energy consumption of the residential load. Recently, deep learning algorithms are widely used for short-term load forecasting (STLF) of residential load. Although deep learning algorithms are capable of achieving promising results due to their ability in feature extraction, machine learning algorithms are also prone to obtain satisfactory results with lower complexity and easier implementation. Identifying the most dominant features which have the highest impact on residential load is a pragmatic measure to boost the accuracy of STLF. But deep learning algorithms use feature extraction, which leads to the loss of data interpretability due to transforming the data. This paper proposes to improve the accuracy of the individual residential STLF using an enhanced machine learning-based approach via a feature-engineering framework. To this end, various datasets and features such as historical load and climate features are collected. Afterward, correlation analysis and outlier detection via the k nearest neighbor algorithm are deployed to implement outlier detection. In the next stage, feature selection algorithms are used to identify the foremost dominant features. Additionally, this paper conducts a comparative study between the proposed approach and state-of-the-art deep learning architectures. Eventually, the isolation forest algorithm is used to verify the effectiveness of the proposed approach by identifying anomalous samples and comparing the results of the proposed approach with those of deep learning algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting
    Kim, Seon Hyeog
    Lee, Gyul
    Kwon, Gu-Young
    Kim, Do-In
    Shin, Yong-June
    ENERGIES, 2018, 11 (12)
  • [32] Research on Short-term Load Forecasting of Power System Based on Deep Learning
    Li, Lei
    Jia, Kunlin
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 251 - 255
  • [33] Machine learning and deep learning models based grid search cross validation for short-term solar irradiance forecasting
    El-Shahat, Doaa
    Tolba, Ahmed
    Abouhawwash, Mohamed
    Abdel-Basset, Mohamed
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [34] A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms
    Hou, Tingting
    Fang, Rengcun
    Tang, Jinrui
    Ge, Ganheng
    Yang, Dongjun
    Liu, Jianchao
    Zhang, Wei
    ENERGIES, 2021, 14 (22)
  • [35] Optimizing Building Short-Term Load Forecasting: A Comparative Analysis of Machine Learning Models
    Koukaras, Paraskevas
    Mustapha, Akeem
    Mystakidis, Aristeidis
    Tjortjis, Christos
    ENERGIES, 2024, 17 (06)
  • [36] Residential Load Forecasting for Flexibility Prediction Using Machine Learning-Based Regression Model
    Ahmadiahangar, Roya
    Haring, Tobias
    Rosin, Argo
    Korotko, Tarmo
    Martins, Jodo
    2019 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2019 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2019,
  • [37] Forecasting monthly copper price: A comparative study of various machine learning-based methods
    Zhang, Hong
    Hoang Nguyen
    Diep-Anh Vu
    Xuan-Nam Bui
    Pradhan, Biswajeet
    RESOURCES POLICY, 2021, 73
  • [38] Echo state neural network based ensemble deep learning for short-term load forecasting
    Gao, Ruobin
    Suganthan, P. N.
    Zhou, Qin
    Yuen, Kum Fai
    Tanveer, M.
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 277 - 284
  • [39] Deep-learning-based short-term electricity load forecasting: A real case application
    Yazici, Ibrahim
    Beyca, Omer Faruk
    Delen, Dursun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 109
  • [40] Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN
    Adaryani, Fatemeh Rezaie
    Mousavi, S. Jamshid
    Jafari, Fatemeh
    JOURNAL OF HYDROLOGY, 2022, 614