Short-term individual residential load forecasting using an enhanced machine learning-based approach based on a feature engineering framework: A comparative study with deep learning methods

被引:19
|
作者
Forootani, Ali [1 ]
Rastegar, Mohammad [1 ]
Sami, Ashkan [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Power & Control, Shiraz, Iran
[2] Shiraz Univ, Dept Comp Sci & Engn & Informat Technol, Shiraz, Iran
关键词
Residential load forecasting; Feature selection; Outlier detection; Machine learning; Deep learning; FEATURE-SELECTION; REGRESSION;
D O I
10.1016/j.epsr.2022.108119
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate short-term forecasting of the individual residential load is a challenging task due to the nonlinear behavior of the residential customer. Moreover, there are a large number of features that have impact on the energy consumption of the residential load. Recently, deep learning algorithms are widely used for short-term load forecasting (STLF) of residential load. Although deep learning algorithms are capable of achieving promising results due to their ability in feature extraction, machine learning algorithms are also prone to obtain satisfactory results with lower complexity and easier implementation. Identifying the most dominant features which have the highest impact on residential load is a pragmatic measure to boost the accuracy of STLF. But deep learning algorithms use feature extraction, which leads to the loss of data interpretability due to transforming the data. This paper proposes to improve the accuracy of the individual residential STLF using an enhanced machine learning-based approach via a feature-engineering framework. To this end, various datasets and features such as historical load and climate features are collected. Afterward, correlation analysis and outlier detection via the k nearest neighbor algorithm are deployed to implement outlier detection. In the next stage, feature selection algorithms are used to identify the foremost dominant features. Additionally, this paper conducts a comparative study between the proposed approach and state-of-the-art deep learning architectures. Eventually, the isolation forest algorithm is used to verify the effectiveness of the proposed approach by identifying anomalous samples and comparing the results of the proposed approach with those of deep learning algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Deep learning based short term load forecasting with hybrid feature selection*
    Subbiah, Siva Sankari
    Chinnappan, Jayakumar
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 210
  • [22] Very Short-Term Reactive Power Forecasting Using Machine Learning-Based Algorithms
    Tolun, Gulizar Gizem
    Zor, Kasim
    9TH INTERNATIONAL YOUTH CONFERENCE ON ENERGY, IYCE 2024, 2024,
  • [23] Short-Term Wind Energy Forecasting Using Deep Learning-Based Predictive Analytics
    Shabbir, Noman
    Kutt, Lauri
    Jawad, Muhammad
    Husev, Oleksandr
    Rehman, Ateeq Ur
    Gardezi, Akber Abid
    Shafiq, Muhammad
    Choi, Jin-Ghoo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 1017 - 1033
  • [24] A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks
    Elalem, Yara Kayyali
    Maier, Sebastian
    Seifert, Ralf W.
    INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (04) : 1874 - 1894
  • [25] Short-Term Energy Forecasting Framework Using an Ensemble Deep Learning Approach
    Ishaq, Muhammad
    Kwon, Soonil
    IEEE ACCESS, 2021, 9 : 94262 - 94271
  • [26] On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach
    Farsi, Behnam
    Amayri, Manar
    Bouguila, Nizar
    Eicker, Ursula
    IEEE ACCESS, 2021, 9 : 31191 - 31212
  • [27] A Hybrid Residential Short-Term Load Forecasting Method Using Attention Mechanism and Deep Learning
    Ji, Xinhui
    Huang, Huijie
    Chen, Dongsheng
    Yin, Kangning
    Zuo, Yi
    Chen, Zhenping
    Bai, Rui
    BUILDINGS, 2023, 13 (01)
  • [28] Machine learning based very short term load forecasting of machine tools
    Dietrich, Bastian
    Walther, Jessica
    Weigold, Matthias
    Abele, Eberhard
    APPLIED ENERGY, 2020, 276
  • [29] Short-Term Load Forecasting of Integrated Energy Systems Based on Deep Learning
    Huan, Jiajia
    Hong, Haifeng
    Pan, Xianxian
    Sui, Yu
    Zhang, Xiaohui
    Jiang, Xuedong
    Wang, Chaoqun
    2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), 2020, : 16 - 20
  • [30] Phase Space Reconstruction Algorithm and Deep Learning-Based Very Short-Term Bus Load Forecasting
    Shi, Tian
    Mei, Fei
    Lu, Jixiang
    Lu, Jinjun
    Pan, Yi
    Zhou, Cheng
    Wu, Jianzhang
    Zheng, Jianyong
    ENERGIES, 2019, 12 (22)