KFAS: Exponential Family State Space Models in R

被引:62
作者
Helske, Jouni [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
关键词
R; exponential family; state space models; time series; forecasting; dynamic linear models; PACKAGE; DRIVEN;
D O I
10.18637/jss.v078.i10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
State space modeling is an efficient and flexible method for statistical inference of a broad class of time series and other data. This paper describes the R package KFAS for state space modeling with the observations from an exponential family, namely Gaussian, Poisson, binomial, negative binomial and gamma distributions. After introducing the basic theory behind Gaussian and non-Gaussian state space models, an illustrative example of Poisson time series forecasting is provided. Finally, a comparison to alternative R packages suitable for non-Gaussian time series modeling is presented.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 41 条
[1]  
Anderson B. D., 2012, OPTIMAL FILTERING
[2]  
[Anonymous], GAMLSS UTIL GAMLSS U
[3]  
[Anonymous], 2015, ACP: Autoregressive conditional poisson
[4]  
[Anonymous], VECTOR GENERALIZED L
[5]  
[Anonymous], 2013, SEAMLESS R C INTEGRA
[6]  
Bates D., 2017, Matrix: Sparse and Dense Matrix Classes and Methods
[7]  
Bates D., 2014, J Stat Softw, DOI [DOI 10.18637/JSS.V067.I01, 10.18637/jss.v067.i01]
[8]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[9]  
Bivand RS, 2015, J STAT SOFTW, V63, P1
[10]  
Chowdhury KR, 2015, RUCM IMPLEMENTATION